Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Pathog ; 20(10): e1012341, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39446925

RESUMO

Viral infection leads to heterogeneous cellular outcomes ranging from refractory to abortive and fully productive states. Single cell transcriptomics enables a high resolution view of these distinct post-infection states. Here, we have interrogated the host-pathogen dynamics following reactivation of Epstein-Barr virus (EBV). While benign in most people, EBV is responsible for infectious mononucleosis, up to 2% of human cancers, and is a trigger for the development of multiple sclerosis. Following latency establishment in B cells, EBV reactivates and is shed in saliva to enable infection of new hosts. Beyond its importance for transmission, the lytic cycle is also implicated in EBV-associated oncogenesis. Conversely, induction of lytic reactivation in latent EBV-positive tumors presents a novel therapeutic opportunity. Therefore, defining the dynamics and heterogeneity of EBV lytic reactivation is a high priority to better understand pathogenesis and therapeutic potential. In this study, we applied single-cell techniques to analyze diverse fate trajectories during lytic reactivation in three B cell models. Consistent with prior work, we find that cell cycle and MYC expression correlate with cells refractory to lytic reactivation. We further found that lytic induction yields a continuum from abortive to complete reactivation. Abortive lytic cells upregulate NFκB and IRF3 pathway target genes, while cells that proceed through the full lytic cycle exhibit unexpected expression of genes associated with cellular reprogramming. Distinct subpopulations of lytic cells further displayed variable profiles for transcripts known to escape virus-mediated host shutoff. These data reveal previously unknown and promiscuous outcomes of lytic reactivation with broad implications for viral replication and EBV-associated oncogenesis.

2.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915538

RESUMO

Viral infection leads to heterogeneous cellular outcomes ranging from refractory to abortive and fully productive states. Single cell transcriptomics enables a high resolution view of these distinct post-infection states. Here, we have interrogated the host-pathogen dynamics following reactivation of Epstein-Barr virus (EBV). While benign in most people, EBV is responsible for infectious mononucleosis, up to 2% of human cancers, and is a trigger for the development of multiple sclerosis. Following latency establishment in B cells, EBV reactivates and is shed in saliva to enable infection of new hosts. Beyond its importance for transmission, the lytic cycle is also implicated in EBV-associated oncogenesis. Conversely, induction of lytic reactivation in latent EBV-positive tumors presents a novel therapeutic opportunity. Therefore, defining the dynamics and heterogeneity of EBV lytic reactivation is a high priority to better understand pathogenesis and therapeutic potential. In this study, we applied single-cell techniques to analyze diverse fate trajectories during lytic reactivation in two B cell models. Consistent with prior work, we find that cell cycle and MYC expression correlate with cells refractory to lytic reactivation. We further found that lytic induction yields a continuum from abortive to complete reactivation. Abortive lytic cells upregulate NFκB and IRF3 pathway target genes, while cells that proceed through the full lytic cycle exhibit unexpected expression of genes associated with cellular reprogramming. Distinct subpopulations of lytic cells further displayed variable profiles for transcripts known to escape virus-mediated host shutoff. These data reveal previously unknown and promiscuous outcomes of lytic reactivation with broad implications for viral replication and EBV-associated oncogenesis.

3.
mBio ; 15(1): e0244423, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38059622

RESUMO

IMPORTANCE: Epstein-Barr virus has evolved with its human host leading to an intimate relationship where infection of antibody-producing B cells mimics the process by which these cells normally recognize foreign antigens and become activated. Virtually everyone in the world is infected by adulthood and controls this virus pushing it into life-long latency. However, immune-suppressed individuals are at high risk for EBV+ cancers. Here, we isolated B cells from tonsils and compare the underlying molecular genetic differences between these cells and those infected with EBV. We find similar regulatory mechanism for expression of an important cellular protein that enables B cells to survive in lymphoid tissue. These findings link an underlying relationship at the molecular level between EBV-infected B cells in vitro with normally activated B cells in vivo. Our studies also characterize the role of a key viral control mechanism for B cell survival involved in long-term infection.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Proteínas Proto-Oncogênicas c-bcl-2 , Adulto , Humanos , Cromatina , Antígenos Nucleares do Vírus Epstein-Barr , Centro Germinativo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Latência Viral , Proteínas Proto-Oncogênicas c-bcl-2/genética
4.
Cell Rep ; 42(8): 112958, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37561629

RESUMO

Chromatin accessibility fundamentally governs gene expression and biological response programs that can be manipulated by pathogens. Here we capture dynamic chromatin landscapes of individual B cells during Epstein-Barr virus (EBV) infection. EBV+ cells that exhibit arrest via antiviral sensing and proliferation-linked DNA damage experience global accessibility reduction. Proliferative EBV+ cells develop expression-linked architectures and motif accessibility profiles resembling in vivo germinal center (GC) phenotypes. Remarkably, EBV elicits dark zone (DZ), light zone (LZ), and post-GC B cell chromatin features despite BCL6 downregulation. Integration of single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), single-cell RNA sequencing (scRNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) data enables genome-wide cis-regulatory predictions implicating EBV nuclear antigens (EBNAs) in phenotype-specific control of GC B cell activation, survival, and immune evasion. Knockouts validate bioinformatically identified regulators (MEF2C and NFE2L2) of EBV-induced GC phenotypes and EBNA-associated loci that regulate gene expression (CD274/PD-L1). These data and methods can inform high-resolution investigations of EBV-host interactions, B cell fates, and virus-mediated lymphomagenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/fisiologia , Infecções por Vírus Epstein-Barr/genética , Cromatina , Centro Germinativo/metabolismo , Linfócitos B/metabolismo
5.
Front Immunol ; 13: 1001145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248899

RESUMO

Human B cells encompass functionally diverse lineages and phenotypic states that contribute to protective as well as pathogenic responses. Epstein-Barr virus (EBV) provides a unique lens for studying heterogeneous B cell responses, given its adaptation to manipulate intrinsic cell programming. EBV promotes the activation, proliferation, and eventual outgrowth of host B cells as immortalized lymphoblastoid cell lines (LCLs) in vitro, which provide a foundational model of viral latency and lymphomagenesis. Although cellular responses and outcomes of infection can vary significantly within populations, investigations that capture genome-wide perspectives of this variation at single-cell resolution are in nascent stages. We have recently used single-cell approaches to identify EBV-mediated B cell heterogeneity in de novo infection and within LCLs, underscoring the dynamic and complex qualities of latent infection rather than a singular, static infection state. Here, we expand upon these findings with functional characterizations of EBV-induced dynamic phenotypes that mimic B cell immune responses. We found that distinct subpopulations isolated from LCLs could completely reconstitute the full phenotypic spectrum of their parental lines. In conjunction with conserved patterns of cell state diversity identified within scRNA-seq data, these data support a model in which EBV continuously drives recurrent B cell entry, progression through, and egress from the Germinal Center (GC) reaction. This "perpetual GC" also generates tangent cell fate trajectories including terminal plasmablast differentiation, which constitutes a replicative cul-de-sac for EBV from which lytic reactivation provides escape. Furthermore, we found that both established EBV latency and de novo infection support the development of cells with features of atypical memory B cells, which have been broadly associated with autoimmune disorders. Treatment of LCLs with TLR7 agonist or IL-21 was sufficient to generate an increased frequency of IgD-/CD27-/CD23-/CD38+/CD138+ plasmablasts. Separately, de novo EBV infection led to the development of CXCR3+/CD11c+/FCRL4+ B cells within days, providing evidence for possible T cell-independent origins of a recently described EBV-associated neuroinvasive CXCR3+ B cell subset in patients with multiple sclerosis. Collectively, this work reveals unexpected virus-driven complexity across infected cell populations and highlights potential roles of EBV in mediating or priming foundational aspects of virus-associated immune cell dysfunction in disease.


Assuntos
Linfócitos B , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Autoimunidade , Centro Germinativo , Humanos , Imunoglobulina D/genética , Fenótipo , Receptor 7 Toll-Like/genética
6.
Cell Rep ; 40(9): 111286, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044865

RESUMO

Epstein-Barr virus infection of B lymphocytes elicits diverse host responses via well-adapted transcriptional control dynamics. Consequently, this host-pathogen interaction provides a powerful system to explore fundamental processes leading to consensus fate decisions. Here, we use single-cell transcriptomics to construct a genome-wide multistate model of B cell fates upon EBV infection. Additional single-cell data from human tonsils reveal correspondence of model states to analogous in vivo phenotypes within secondary lymphoid tissue, including an EBV+ analog of multipotent activated precursors that can yield early memory B cells. These resources yield exquisitely detailed perspectives of the transforming cellular landscape during an oncogenic viral infection that simulates antigen-induced B cell activation and differentiation. Thus, they support investigations of state-specific EBV-host dynamics, effector B cell fates, and lymphomagenesis. To demonstrate this potential, we identify EBV infection dynamics in FCRL4+/TBX21+ atypical memory B cells that are pathogenically associated with numerous immune disorders.


Assuntos
Infecções por Vírus Epstein-Barr , Linfócitos B , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Transcriptoma/genética
8.
Sci Adv ; 7(38): eabf9840, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533995

RESUMO

Single-cell analysis tools have made substantial advances in characterizing genomic heterogeneity; however, tools for measuring phenotypic heterogeneity have lagged due to the increased difficulty of handling live biology. Here, we report a single-cell phenotyping tool capable of measuring image-based clonal properties at scales approaching 100,000 clones per experiment. These advances are achieved by exploiting a previously unidentified flow regime in ladder microfluidic networks that, under appropriate conditions, yield a mathematically perfect cell trap. Machine learning and computer vision tools are used to control the imaging hardware and analyze the cellular phenotypic parameters within these images. Using this platform, we quantified the responses of tens of thousands of single cell­derived acute myeloid leukemia (AML) clones to targeted therapy, identifying rare resistance and morphological phenotypes at frequencies down to 0.05%. This approach can be extended to higher-level cellular architectures such as cell pairs and organoids and on-chip live-cell fluorescence assays.


Assuntos
Leucemia Mieloide Aguda , Células Clonais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Microfluídica , Fenótipo , Análise de Célula Única/métodos
9.
Elife ; 102021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33501914

RESUMO

Lymphoblastoid cell lines (LCLs) are generated by transforming primary B cells with Epstein-Barr virus (EBV) and are used extensively as model systems in viral oncology, immunology, and human genetics research. In this study, we characterized single-cell transcriptomic profiles of five LCLs and present a simple discrete-time simulation to explore the influence of stochasticity on LCL clonal evolution. Single-cell RNA sequencing (scRNA-seq) revealed substantial phenotypic heterogeneity within and across LCLs with respect to immunoglobulin isotype; virus-modulated host pathways involved in survival, activation, and differentiation; viral replication state; and oxidative stress. This heterogeneity is likely attributable to intrinsic variance in primary B cells and host-pathogen dynamics. Stochastic simulations demonstrate that initial primary cell heterogeneity, random sampling, time in culture, and even mild differences in phenotype-specific fitness can contribute substantially to dynamic diversity in populations of nominally clonal cells.


Assuntos
Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Transcriptoma , Linfócitos B/fisiologia , Linhagem Celular , Humanos , RNA-Seq , Análise de Célula Única
10.
Sci Rep ; 9(1): 10388, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316099

RESUMO

Current in vivo neuroimaging techniques provide limited field of view or spatial resolution and often require exogenous contrast. These limitations prohibit detailed structural imaging across wide fields of view and hinder intraoperative tumor margin detection. Here we present a novel neuroimaging technique, speckle-modulating optical coherence tomography (SM-OCT), which allows us to image the brains of live mice and ex vivo human samples with unprecedented resolution and wide field of view using only endogenous contrast. The increased visibility provided by speckle elimination reveals white matter fascicles and cortical layer architecture in brains of live mice. To our knowledge, the data reported herein represents the highest resolution imaging of murine white matter structure achieved in vivo across a wide field of view of several millimeters. When applied to an orthotopic murine glioblastoma xenograft model, SM-OCT readily identifies brain tumor margins with resolution of approximately 10 µm. SM-OCT of ex vivo human temporal lobe tissue reveals fine structures including cortical layers and myelinated axons. Finally, when applied to an ex vivo sample of a low-grade glioma resection margin, SM-OCT is able to resolve the brain tumor margin. Based on these findings, SM-OCT represents a novel approach for intraoperative tumor margin detection and in vivo neuroimaging.


Assuntos
Neuroimagem/métodos , Tomografia de Coerência Óptica/métodos , Substância Branca/diagnóstico por imagem , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Bases de Dados de Compostos Químicos , Modelos Animais de Doenças , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Humanos , Margens de Excisão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus
11.
Nano Lett ; 19(4): 2334-2342, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30895796

RESUMO

Optical coherence tomography (OCT) can be utilized with significant speckle reduction techniques and highly scattering contrast agents for non-invasive, contrast-enhanced imaging of living tissues at the cellular scale. The advantages of reduced speckle noise and improved targeted contrast can be harnessed to track objects as small as 2 µm in vivo, which enables applications for cell tracking and quantification in living subjects. Here we demonstrate the use of large gold nanorods as contrast agents for detecting individual micron-sized polystyrene beads and single myeloma cells in blood circulation using speckle-modulating OCT. This report marks the first time that OCT has been used to detect individual cells within blood in vivo. This technical capability unlocks exciting opportunities for dynamic detection and quantification of tumor cells circulating in living subjects.


Assuntos
Meios de Contraste/farmacologia , Mieloma Múltiplo/sangue , Nanotubos/química , Células Neoplásicas Circulantes/patologia , Animais , Meios de Contraste/química , Ouro/química , Humanos , Camundongos , Mieloma Múltiplo/patologia , Poliestirenos/química , Análise de Célula Única/métodos , Tomografia de Coerência Óptica/métodos
12.
Nat Commun ; 8: 16131, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28695909

RESUMO

This corrects the article DOI: 10.1038/ncomms15845.

13.
Nat Commun ; 8: 15845, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632205

RESUMO

Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin-features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.


Assuntos
Córnea/diagnóstico por imagem , Pavilhão Auricular/diagnóstico por imagem , Retina/diagnóstico por imagem , Pele/diagnóstico por imagem , Glândulas Sudoríparas/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Animais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Mecanorreceptores/metabolismo , Camundongos , Modelos Biológicos , Imagens de Fantasmas
14.
Biomaterials ; 135: 42-52, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28486147

RESUMO

Despite extensive research and development, new nano-based diagnostic contrast agents have faced major barriers in gaining regulatory approval due to their potential systemic toxicity and prolonged retention in vital organs. Here we use five independent biodistribution techniques to demonstrate that oral ingestion of one such agent, gold-silica Raman nanoparticles, results in complete clearance with no systemic toxicity in living mice. The oral delivery mimics topical administration to the oral cavity and gastrointestinal (GI) tract as an alternative to intravenous injection. Biodistribution and clearance profiles of orally (OR) vs. intravenously (IV) administered Raman nanoparticles were assayed over the course of 48 h. Mice given either an IV or oral dose of Raman nanoparticles radiolabeled with approximately 100 µCi (3.7MBq) of 64Cu were imaged with dynamic microPET immediately post nanoparticle administration. Static microPET images were also acquired at 2 h, 5 h, 24 h and 48 h. Mice were sacrificed post imaging and various analyses were performed on the excised organs to determine nanoparticle localization. The results from microPET imaging, gamma counting, Raman imaging, ICP-MS, and hyperspectral imaging of tissue sections all correlated to reveal no evidence of systemic distribution of Raman nanoparticles after oral administration and complete clearance from the GI tract within 24 h. Paired with the unique signals and multiplexing potential of Raman nanoparticles, this approach holds great promise for realizing targeted imaging of tumors and dysplastic tissues within the oral cavity and GI-tract. Moreover, these results suggest a viable path for the first translation of high-sensitivity Raman contrast imaging into clinical practice.


Assuntos
Imagem Multimodal/métodos , Nanopartículas/metabolismo , Análise Espectral Raman/métodos , Animais , Feminino , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos
15.
Elife ; 52016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27536877

RESUMO

Nanoparticles are used extensively as biomedical imaging probes and potential therapeutic agents. As new particles are developed and tested in vivo, it is critical to characterize their biodistribution profiles. We demonstrate a new method that uses adaptive algorithms for the analysis of hyperspectral dark-field images to study the interactions between tissues and administered nanoparticles. This non-destructive technique quantitatively identifies particles in ex vivo tissue sections and enables detailed observations of accumulation patterns arising from organ-specific clearance mechanisms, particle size, and the molecular specificity of nanoparticle surface coatings. Unlike nanoparticle uptake studies with electron microscopy, this method is tractable for imaging large fields of view. Adaptive hyperspectral image analysis achieves excellent detection sensitivity and specificity and is capable of identifying single nanoparticles. Using this method, we collected the first data on the sub-organ distribution of several types of gold nanoparticles in mice and observed localization patterns in tumors.

16.
J Biomed Opt ; 21(6): 66002, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27264492

RESUMO

Optical coherence tomography (OCT) is a noninvasive interferometric imaging modality providing anatomical information at depths of millimeters and a resolution of micrometers. Conventional OCT images limit our knowledge to anatomical structures alone, without any contrast enhancement. Therefore, here we have, for the first time, optimized an OCT-based contrast-enhanced imaging system for imaging single cells and blood vessels in vivo inside the living mouse retina at subnanomolar sensitivity. We used bioconjugated gold nanorods (GNRs) as exogenous OCT contrast agents. Specifically, we used anti-mouse CD45 coated GNRs to label mouse leukocytes and mPEG-coated GNRs to determine sensitivity of GNR detection in vivo inside mice retinae. We corroborated OCT observations with hyperspectral dark-field microscopy of formalin-fixed histological sections. Our results show that mouse leukocytes that otherwise do not produce OCT contrast can be labeled with GNRs leading to significant OCT intensity equivalent to a 0.5 nM GNR solution. Furthermore, GNRs injected intravenously can be detected inside retinal blood vessels at a sensitivity of ∼0.5 nM, and GNR-labeled cells injected intravenously can be detected inside retinal capillaries by enhanced OCT contrast. We envision the unprecedented resolution and sensitivity of functionalized GNRs coupled with OCT to be adopted for longitudinal studies of retinal disorders.


Assuntos
Ouro/química , Nanotubos/química , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica , Animais , Meios de Contraste/química , Interferometria , Camundongos
17.
Sci Rep ; 6: 23337, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26987475

RESUMO

Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.


Assuntos
Meios de Contraste/administração & dosagem , Diagnóstico por Imagem/métodos , Tomografia de Coerência Óptica/métodos , Algoritmos , Animais , Ouro/administração & dosagem , Ouro/química , Camundongos , Nanotubos/análise , Sensibilidade e Especificidade
18.
Appl Phys Lett ; 108(2): 023702, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26869724

RESUMO

We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within a voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.

19.
Langmuir ; 31(45): 12339-47, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26477361

RESUMO

Gold nanorods (GNRs, ∼ 50 × 15 nm) have been used ubiquitously in biomedicine for their optical properties, and many methods of GNR biofunctionalization have been described. Recently, the synthesis of larger-than-usual GNRs (LGNRs, ∼ 100 × 30 nm) has been demonstrated. However, LGNRs have not been biofunctionalized and therefore remain absent from biomedical literature to date. Here we report the successful biofunctionalization of LGNRs, which produces highly stable particles that exhibit a narrow spectral peak (FWHM ∼100 nm). We further demonstrated that functionalized LGNRs can be used as highly sensitive scattering contrast agents by detecting individual LGNRs in clear liquids. Owing to their increased optical cross sections, we found that LGNRs exhibited up to 32-fold greater backscattering than conventional GNRs. We leveraged these enhanced optical properties to detect LGNRs in the vasculature of live tumor-bearing mice. With LGNR contrast enhancement, we were able to visualize tumor blood vessels at depths that were otherwise undetectable. We expect that the particles reported herein will enable immediate sensitivity improvements in a wide array of biomedical imaging and sensing techniques that rely on conventional GNRs.


Assuntos
Biotina/química , Meios de Contraste/química , Glioblastoma/diagnóstico , Ouro/química , Nanotubos/química , Estreptavidina/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/administração & dosagem , Orelha/irrigação sanguínea , Orelha/patologia , Feminino , Glioblastoma/irrigação sanguínea , Glioblastoma/patologia , Ouro/administração & dosagem , Luz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Nanotubos/ultraestrutura , Transplante de Neoplasias , Imagem Óptica/métodos , Tamanho da Partícula , Polietilenoglicóis/química , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA