Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol ; 96(6): 1251-1266, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32472704

RESUMO

Blepharismins are photodynamic hypericin-like dianthrones produced as a variable pigment blend in Blepharisma ciliates and mostly studied in the Afro-Asiatic Blepharisma japonicum. The present work describes the bioactivity of pigments from the Brazilian Blepharisma sinuosum. Comparative analyses showed that the pigments from both species can trigger photo-induced modifications in phospholipids, but different redox properties and biological activities were assigned for each pigment blend. Stronger activities were detected for B. sinuosum pigments, with the lethal concentration LC50 10 × lower than B. japonicum pigments in light-irradiated tests against Bacillus cereus and less than half for treatments on the human HeLa tumor cells. HPLC showed B. sinuosum producing a simpler pigment blend, mostly with the blepharismin-C (~ 70%) and blepharismin-E (~ 30%) types. Each blepharismin engaged a specific dose-response profile on sensitive cells. The blepharismin-B and blepharismin-C were the most toxic pigments, showing LC50  ~ 2.5-3.0 µm and ~ 100 µm on B. cereus and HeLa cells, respectively, after illumination. Similarity clustering analysis compiling the bioactivity data revealed two groups of blepharismins: the most active, B and C, and the less active, A, D and E. The B. sinuosum pigment blend includes one representative of each clade. Functional and medical implications are discussed.


Assuntos
Cilióforos/efeitos da radiação , Fotoquimioterapia , Cilióforos/classificação , Células HeLa , Humanos , Dose Letal Mediana , Especificidade da Espécie
2.
Genome Biol Evol ; 10(3): 723-730, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29415256

RESUMO

Mutations contribute to genetic variation in all living systems. Thus, precise estimates of mutation rates and spectra across a diversity of organisms are required for a full comprehension of evolution. Here, a mutation-accumulation (MA) assay was carried out on the endosymbiotic bacterium Teredinibacter turnerae. After ∼3,025 generations, base-pair substitutions (BPSs) and insertion-deletion (indel) events were characterized by whole-genome sequencing analysis of 47 independent MA lines, yielding a BPS rate of 1.14 × 10-9 per site per generation and indel rate of 1.55 × 10-10 events per site per generation, which are among the highest within free-living and facultative intracellular bacteria. As in other endosymbionts, a significant bias of BPSs toward A/T and an excess of deletion mutations over insertion mutations are observed for these MA lines. However, even with a deletion bias, the genome remains relatively large (∼5.2 Mb) for an endosymbiotic bacterium. The estimate of the effective population size (Ne) in T. turnerae is quite high and comparable to free-living bacteria (∼4.5 × 107), suggesting that the heavy bottlenecking associated with many endosymbiotic relationships is not prevalent during the life of this endosymbiont. The efficiency of selection scales with increasing Ne and such strong selection may have been operating against the deletion bias, preventing genome erosion. The observed mutation rate in this endosymbiont is of the same order of magnitude of those with similar Ne, consistent with the idea that population size is a primary determinant of mutation-rate evolution within endosymbionts, and that not all endosymbionts have low Ne.


Assuntos
Evolução Molecular , Gammaproteobacteria/genética , Seleção Genética , Variação Genética , Genoma Bacteriano , Mutação , Taxa de Mutação , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA