RESUMO
Due to the increase in new types of cancer cells and resistance to drugs, conventional cancer treatments are sometimes insufficient. Therefore, an alternative is to apply nanotechnology to biomedical areas, minimizing side effects and drug resistance and improving treatment efficacy. This work aims to find a promising cancer treatment in the human colorectal adenocarcinoma cell line (HT-29) to minimize the viability of cells (IC50) by using carbon nanotubes (CNTs) combined with different drugs (5-fluorouracil (5-FU) and two repurposing drugs-tacrine (TAC) and ethionamide (ETA). Several CNT samples with different functional groups (-O, -N, -S) and textural properties were prepared and characterized by elemental and thermogravimetry analysis, size distribution, and textural and temperature programmed desorption. The samples that interacted most with the drugs and contributed to improving HT-29 cell treatment were samples doped with nitrogen and sulfur groups (CNT-BM-N and CNT-H2SO4-BM) with IC50 1.98 and 2.50 µmolâdm-3 from 5-FU and 15.32 and 15.81 µmolâdm-3 from TAC. On the other hand, ETA had no activity, even combined with the CNTs. These results allow us to conclude that the activity was improved for both 5-FU and TAC when combined with CNTs.
RESUMO
TiO2-containing photocatalysts, which combine TiO2 with carbon-based materials, are promising materials for wastewater treatment due to synergistic photodegradation and adsorption phenomena. In this work, TiO2/AC composites were produced by the in situ immobilization of TiO2 nanoparticles over activated carbon (AC) derived from spent coffee grains, using different TiO2/AC proportions. The TiO2/AC composites were tested as adsorbents (dark) and as photocatalysts in a combined adsorption+photocatalytic process (solar irradiation) for methylene blue (MB) removal from ultrapure water, and from a secondary effluent (SecEf) of an urban wastewater treatment plant. All the materials were characterized by XRD (X-ray powder diffraction), N2 adsorption-desorption isotherms at -196 °C, SEM (scanning electron microscopy), UV-Vis diffuse reflectance, FTIR (Fourier-transform infrared spectroscopy), TPD (temperature programmed desorption), XPS (X-ray photoelectron spectroscopy) and TGA (thermogravimetric analysis). The TiAC60 (60% C) composite presented the lowest band gap (1.84 eV), while, for TiAC29 (29% C), the value was close to that of bare TiO2 (3.18 vs. 3.17 eV). Regardless of the material, the solar irradiation improved the percentage of MB discolouration when compared to adsorption in dark conditions. In the case of simultaneous adsorption+photocatalytic assays performed in ultrapure water, TiAC29 presented the fastest MB removal. Nevertheless, both TiAC29 and TiAC60 led to excellent MB removal percentages (96.1-98.1%). UV-induced photoregeneration was a promising strategy to recover the adsorption capacity of the materials, especially for TiAC60 and AC (>95%). When the assays were performed in SecEf, all the materials promoted discolouration percentages close to those obtained in ultrapure water. The bulk water parameters revealed that TiAC60 allowed the removal of a higher amount of MB, associated with the overall improvement of the SecEf quality.
RESUMO
The catalytic reduction of nitrites over Pt-In catalysts supported on activated carbon has been studied in a semi-batch reactor, at room temperature and atmospheric pressure, and using hydrogen as the reducing agent. The influence of the indium content on the activity and selectivity was evaluated. Monometallic Pt catalysts are very active for nitrite reduction, but the addition of up to 1 wt% of indium significantly increases the nitrogen selectivity from 0 to 96%. The decrease in the accessible noble metal surface area reduces the amount of hydrogen available at the catalyst surface, this favoring the combination of nitrogen-containing intermediate molecules to promote the formation of N2 instead of being deeply hydrogenated into NH4+. Several activated carbon-supported Pt-In catalysts, activated under different calcination and reduction temperatures, have been also evaluated in nitrite reduction. The catalyst calcined and reduced at 400°C showed the best performance considering both the activity and the selectivity to nitrogen. This enhanced selectivity is ascribed to the formation of Pt-In alloy. The electronic properties of Pt change upon alloy formation, as it is demonstrated by XPS.
RESUMO
Hybrid nanomaterials based on the covalent grafting of silylated naphthopyrans (NPTs) onto silica nanoparticles (SiO2 NPs) were successfully prepared and studied as new photochromic materials. They were prepared by a two-step protocol consisting of (i) NPTs (derivatives from 2H-naphtho[1,2-b]pyran (2H-NPT) and 3H-naphtho[2,1-b]pyran (3H-NPT)) silylation by a microwave-assisted reaction between hydroxyl-substituted NPTs and 3-(triethoxysilyl)propyl isocyanate, followed by (ii) covalent post-grafting onto SiO2 NPs. In order to study the role of the silylation step, the analogous non-silylated nanomaterials were also prepared by direct adsorption of NPTs. The characterization techniques confirmed the successful NPTs silylation and subsequent grafting to SiO2 NPs. All SiO2-based nanomaterials revealed photoswitching behavior, following a biexponential decay. The SiO2 NPs functionalized with silylated 3H-NPTs (SiO2@S3 and SiO2@S4) presented the most promising photochromic properties, showing fast coloration/decoloration kinetics (coloring in 1 min under UV irradiation and fading in only 2 min) and high values of total color difference (ΔE*ab = 30-50). Also, the 2H-NPTs-based SiO2 NPs (SiO2@S1 and SiO2@S2) presented fast coloration and good color contrasts (ΔE*ab = 54), but slower fading kinetic rates, taking more than 2 h to return to their initial color. In contrast, the SiO2 NPs functionalized with non-silylated NPTs (SiO2@1 and SiO2@3) showed weaker color contrasts (ΔE*ab = 6-10) and slower fading kinetics, proving that the NPT silylation step was crucial to enhance the photochromic behavior of SiO2 NPs based on NPTs. Furthermore, the silylated-based nanomaterials showed good photostability upon prolonged UV light exposure, keeping their photochromic performance unchanged for at least 12 successive UV/dark cycles, anticipating interesting technological applications in several areas.
RESUMO
The effect of the support (activated carbon or titanium dioxide) on the catalytic activity and selectivity to nitrogen of Pt-Sn catalysts in nitrate reduction was studied. The effects of the preparation conditions and the Pt:Sn atomic ratio were also evaluated. It was observed that the support plays an important role in nitrate reduction and that different preparation conditions lead to different catalytic activities and selectivities. Generally, the catalysts supported on activated carbon were less active but more selective to nitrogen than those supported on titanium dioxide. The monometallic Pt catalyst is active for nitrate reduction only when supported on titanium dioxide, which is explained by the involvement of the support in the reaction mechanism. The catalysts were characterized by different techniques, and significant changes on metal chemical states were observed for the different preparation conditions used. Only metallic Pt and oxidized Sn were observed at low calcination and reduction temperatures, but some metallic Sn was also present when high temperatures were used, being also possible the formation of Pt-Sn alloys.
Assuntos
Nitratos/química , Platina/química , Estanho/química , Água/química , Catálise , OxirreduçãoRESUMO
The influence of the presence of inorganic and organic matter during the catalytic reduction of nitrate in a local groundwater over a Pd-Cu catalyst supported on carbon nanotubes was investigated. It was observed that the catalyst performance was affected by the groundwater composition. The nitrate conversion attained was higher in the experiment using only deionized water as solvent than in the case of simulated or real groundwater. With exception of sulphate ions, all the other solutes evaluated (chloride and phosphate ions and natural organic matter) had a negative influence on the catalytic activity and selectivity to nitrogen.
Assuntos
Cobre/química , Nitratos/química , Paládio/química , Poluentes Químicos da Água/química , Catálise , Cloretos/química , Recuperação e Remediação Ambiental , Água Subterrânea/química , Nanotubos de Carbono , Oxirredução , Fosfatos/química , Sulfatos/químicaRESUMO
Ozonation experiments were carried out under continuous operation in a bubble column. The effect of several parameters (inlet dye concentration, applied ozone dose, pH and conductivity) in colour and TOC removal of an acid dye solution was investigated with the aim to optimize the operation conditions. The ozone consumption was measured in each experiment. Ozonation was found to be effective for decolourisation of an acid dye; however, it only has a slight effect on TOC removal. Increasing the inlet dye concentration leads to a decrease in the decolourisation efficiency and an increase in the ozone consumption. The decolourisation increases with the applied ozone dose. Colour removal efficiencies for different ozone doses were between 76 and 100%. In the pH range 5-9, the decolourisation efficiency decreases with pH only when buffered solutions were used. The presence of salt decreases the decolourisation efficiency. Several dyes of different classes were also studied and ozonation was found to be effective for decolourisation but considerably less efficient for TOC removal. Under the conditions tested, only the disperse and sulphur dyes presented a colour removal lower than 86%. Practical application of this process was validated by treating two industrial textile effluents collected after two different biological treatments.