Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Hazard Mater ; 465: 133393, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211519

RESUMO

The environmental fate of hazardous hydrophobic pollutants in the marine environment is strongly influenced by organic carbon (OC) cycling. As an example, the seasonality in primary production impacts both water column OC quantity and quality, which may influence pollutant mass transport from the water column to the sediment. This study aims to better understand the role of water column OC variability for the fate of pollutants in a near-coastal area. We conducted an in situ sampling campaign in the coastal Baltic Proper during two seasons, summer and autumn. We used polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) as model compounds, as they represent a wide range in physicochemical properties and are ubiquitous in the environment. Freely dissolved, and OC-bound concentrations were studied in the water column and surface sediment. We found stronger sorption of pollutants to suspended particulate matter (SPM) during the summer compared to the autumn (average 0.6 and 0.9 log unit higher particle-water partition coefficients during summer for PAHs and PCBs). Our data suggest that stronger sorption mirrors a compositional change of the OC towards higher contribution of labile OC during the summer, characterized by two times higher fatty acid and 24% higher dicarboxylic acids in SPM during summer. High concentrations of OC in the water column during the autumn resulted in increased SPM-mediated sinking fluxes of pollutants. Our results suggest that future changes in primary production are prone to influence the bioavailability and mobility of pollutants in costal zones, potentially affecting the residence time of these hazardous substances in the circulating marine environment.

2.
Environ Pollut ; 341: 122882, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951527

RESUMO

Understanding how key-species respond to anthropogenic stress such as chemical pollution is critical for predicting ecosystem changes. Little is however known about the intra-specific variability in the physiological and biochemical traits involved in contaminant exposure responses. Here, we explored this idea by exposing the Baltic amphipod Monoporeia affinis from two sites, one moderately polluted and one more pristine, to a sediment spiked with PAHs and PCBs. We evaluated the amphipods responses related to feeding, growth, a stress biomarker (acetylcholinesterase [AChE] inhibition) and stable isotope (δ13C and δ15N) composition including isotope niche analyses. More adverse responses were expected in animals from the low-pollution site than those from the high-pollution site due to tolerance development in the latter. Amphipods from both populations showed a ∼30% AChE inhibition when exposed to the contaminant spiked sediment. However, both controls and exposed amphipods from the high-pollution site had higher survival, nutrient uptake and condition status than the amphipods from the low-pollution site, which did not feed on the added diatoms as indicated by their isotope values. We found no signs of population-specific responses in physiological adjustments to contaminants with regard to classic ecotoxicological biomarkers such as AChE inhibition and growth status. Instead, isotope niche analyses proved useful in assessing contaminant stress responses at the population level.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Espécies Sentinelas , Acetilcolinesterase , Ecossistema , Monitoramento Ambiental , Anfípodes/fisiologia , Isótopos/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
3.
Environ Toxicol Chem ; 43(2): 279-287, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975553

RESUMO

Persistent organic pollutants (POPs) pose a risk in aquatic environments. In sediment, this risk is frequently evaluated using total or organic carbon-normalized concentrations. However, complex physicochemical sediment characteristics affect POP bioavailability in sediment, making its prediction a challenging task. This task can be addressed using chemical activity, which describes a compound's environmentally effective concentration and can generally be approximated by the degree of saturation for each POP in its matrix. We present a proof of concept to load artificial sediments with POPs to reach a target chemical activity. This approach is envisioned to make laboratory ecotoxicological bioassays more reproducible and reduce the impact of sediment characteristics on the risk assessment. The approach uses a constantly replenished, saturated, aqueous POP solution to equilibrate the organic carbon fraction (e.g., peat) of an artificial sediment, which can be further adjusted to target chemical activities by mixing with clean peat. We demonstrate the applicability of this approach using four polycyclic aromatic hydrocarbons (acenaphthene, fluorene, phenanthrene, and fluoranthene). Within 5 to 17 weeks, the peat slurry reached a chemical equilibrium with the saturated loading solution. We used two different peat batches (subsamples from the same source) to evaluate the approach. Variations in loading kinetics and eventual equilibrium concentrations were evident between the batches, which highlights the impact of even minor disparities in organic carbon properties within two samples of peat originating from the same source. This finding underlines the importance of moving away from sediment risk assessments based on total concentrations. The value of the chemical activity-based loading approach lies in its ability to anticipate similar environmental impacts, even with varying contaminant concentrations. Environ Toxicol Chem 2024;43:279-287. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Bioensaio , Carbono , Solo
4.
Aquat Toxicol ; 265: 106742, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977012

RESUMO

The production and release of chemicals from human activities are on the rise. Understanding how the aquatic environment is affected by the presence of an unknown number of chemicals is lacking. We employed the chemical activity concept to assess the combined effects of hydrophobic organic contaminants on the phytoplankton species Rodomonas salina. Chemical activity is additive, and refers to the relative saturation of a chemical in the studied matrix. The growth of R. salina was affected by chemical activity, following a chemical activity-response curve, resulting in an Ea50 value of 0.078, which falls within the baseline toxicity range observed in earlier studies. The chlorophyll a content exhibited both increases and decreases with rising chemical activity, with the increase possibly linked to an antioxidant mechanism. Yet, growth inhibition provided more sensitive and robust responses compared to photosynthesis-related endpoints; all measured endpoints correlated with increased chemical activity. Growth inhibition is an ecologically relevant endpoint and integrates thermodynamic principles such as membrane disruption. Our study utilized passive dosing, enabling us to control exposure and determine activities in both the medium and the algae. The concept of chemical activity and our results can be extended to other neutral chemical groups as effects of chemical activity remain independent of the mixture composition.


Assuntos
Artrópodes , Poluentes Químicos da Água , Animais , Humanos , Clorofila A , Poluentes Químicos da Água/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Fitoplâncton
5.
Sci Total Environ ; 888: 164247, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37196966

RESUMO

The climate in Europe is warming twice as fast as it is across the rest of the globe, and in Sweden annual mean temperatures are forecast to increase by up to 3-6 °C by 2100, with increasing frequency and magnitude of floods, heatwaves, and other extreme weather. These climate change-related environmental factors and the response of humans at the individual and collective level will affect the mobilization and transport of and human exposure to chemical pollutants in the environment. We conducted a literature review of possible future impacts of global change in response to a changing climate on chemical pollutants in the environment and human exposure, with a focus on drivers of change in exposure of the Swedish population to chemicals in the indoor and outdoor environment. Based on the literature review, we formulated three alternative exposure scenarios that are inspired by three of the shared socioeconomic pathways (SSPs). We then conducted scenario-based exposure modelling of the >3000 organic chemicals in the USEtox® 2.0 chemical library, and further selected three chemicals (terbuthylazine, benzo[a]pyrene, PCB-155) from the USEtox library that are archetypical pollutants of drinking water and food as illustrative examples. We focus our modelling on changes in the population intake fraction of chemicals, which is calculated as the fraction of a chemical emitted to the environment that is ingested via food uptake or inhaled by the Swedish population. Our results demonstrate that changes of intake fractions of chemicals are possible by up to twofold increases or decreases under different development scenarios. Changes in intake fraction in the most optimistic SSP1 scenario are mostly attributable to a shift by the population towards a more plant-based diet, while changes in the pessimistic SSP5 scenario are driven by environmental changes such as rain fall and runoff rates.


Assuntos
Poluentes Ambientais , Humanos , Suécia , Poluentes Ambientais/análise , Dieta , Europa (Continente) , Chuva , Mudança Climática
6.
Nat Commun ; 14(1): 2012, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037817

RESUMO

Burial of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) in deep-sea sediments contributes to 60% of their historical emissions. Yet, empirical data on their occurrence in the deep-ocean is scarce. Estimates of the deep-ocean POP sink are therefore uncertain. Hadal trenches, representing the deepest part of the ocean, are hotspots for organic carbon burial and decomposition. POPs favorably partition to organic carbon, making trenches likely significant sinks for contaminants. Here we show that PCBs occur in both hadal (7720-8085 m) and non-hadal (2560-4050 m) sediment in the Atacama Trench. PCB concentrations normalized to sediment dry weight were similar across sites while those normalized to sediment organic carbon increased exponentially as the inert organic carbon fraction of the sediment increased in degraded hadal sediments. We suggest that the unique deposition dynamics and elevated turnover of organic carbon in hadal trenches increase POP concentrations in the deepest places on Earth.

7.
Environ Toxicol Chem ; 41(4): 1096-1110, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35040192

RESUMO

Thin-layer capping using activated carbon has been described as a cost-effective in situ sediment remediation method for organic contaminants. We compared the capping efficiency of powdered activated carbon (PAC) against granular activated carbon (GAC) using contaminated sediment from Oskarshamn harbor, Sweden. The effects of resuspension on contaminant retention and cap integrity were also studied. Intact sediment cores were collected from the outer harbor and brought to the laboratory. Three thin-layer caps, consisting of PAC or GAC mixed with clay or clay only, were added to the sediment surface. Resuspension was created using a motor-driven paddle to simulate propeller wash from ship traffic. Passive samplers were placed in the sediment and in the water column to measure the sediment-to-water release of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and metals. Our results show that a thin-layer cap with PAC reduced sediment-to-water fluxes of PCBs by 57% under static conditions and 91% under resuspension. Thin-layer capping with GAC was less effective than PAC but reduced fluxes of high-molecular weight PAHs. Thin-layer capping with activated carbon was less effective at retaining metals, except for Cd, the release of which was significantly reduced by PAC. Resuspension generally decreased water concentrations of dissolved cationic metals, perhaps because of sorption to suspended sediment particles. Sediment resuspension in treatments without capping increased fluxes of PCBs with log octanol-water partitioning coefficient (KOW ) > 7 and PAHs with log KOW of 5-6, but resuspension reduced PCB and PAH fluxes through the PAC thin-layer cap. Overall, PAC performed better than GAC, but adverse effects on the benthic community and transport of PAC to nontarget areas are drawbacks that favor the use of GAC. Environ Toxicol Chem 2022;41:1096-1110. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Carvão Vegetal/química , Argila , Sedimentos Geológicos/química , Metais , Tamanho da Partícula , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Água , Poluentes Químicos da Água/análise
8.
Glob Chang Biol ; 28(4): 1248-1267, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34735747

RESUMO

Freshwater ecosystems are strongly influenced by weather extremes such as heatwaves (HWs), which are predicted to increase in frequency and magnitude in the future. In addition to these climate extremes, the freshwater realm is impacted by the exposure to various classes of chemicals emitted by anthropogenic activities. Currently, there is limited knowledge on how the combined exposure to HWs and chemicals affects the structure and functioning of freshwater ecosystems. Here, we review the available literature describing the single and combined effects of HWs and chemicals on different levels of biological organization, to obtain a holistic view of their potential interactive effects. We only found a few studies (13 out of the 61 studies included in this review) that investigated the biological effects of HWs in combination with chemical pollution. The reported interactive effects of HWs and chemicals varied largely not only within the different trophic levels but also depending on the studied endpoints for populations or individuals. Hence, owing also to the little number of studies available, no consistent interactive effects could be highlighted at any level of biological organization. Moreover, we found an imbalance towards single species and population experiments, with only five studies using a multitrophic approach. This results in a knowledge gap for relevant community and ecosystem level endpoints, which prevents the exploration of important indirect effects that can compromise food web stability. Moreover, this knowledge gap impairs the validity of chemical risk assessments and our ability to protect ecosystems. Finally, we highlight the urgency of integrating extreme events into multiple stressors studies and provide specific recommendations to guide further experimental research in this regard.


Assuntos
Ecossistema , Água Doce , Humanos
9.
Environ Sci Process Impacts ; 23(10): 1542-1553, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34524328

RESUMO

Thousands of dams are currently under construction or planned worldwide to meet the growing need for electricity. The creation of reservoirs could, however, lead to conditions that promote the accumulation of mercury (Hg) in surface sediments and the subsequent production of methylmercury (MeHg). Once produced, MeHg can bioaccumulate to harmful levels in organisms. It is unclear to what extent variations in physical features and biogeochemical factors of the reservoir impact Hg accumulation. The objective of this study was to identify key drivers of the accumulation of total Hg (THg) in tropical reservoir sediments. The concentration of THg in all analyzed depth intervals of 22 sediment cores from the five contrasting reservoirs investigated ranged from 16 to 310 ng g-1 (n = 212, in the different sediment cores, the maximum depth varied from 18 to 96 cm). Our study suggests reservoir size to be an important parameter determining the concentration of THg accumulating in tropical reservoir sediments, with THg ranging up to 50 ng g-1 in reservoirs with an area exceeding 400 km2 and from 100 to 200 ng g-1 in reservoirs with an area less than 80 km2. In addition to the reservoir size, the role of land use, nutrient loading, biome and sediment properties (e.g., organic carbon content) was tested as potential drivers of THg levels. The principal component analysis conducted suggested THg to be related to the properties of the watershed (high degree of forest cover and low degree of agricultural land use), size and age of the reservoir, water residence time and the levels of nutrients in the reservoir. A direct correlation between THg and tested variables was, however, only observed with the area of the reservoir.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Mercúrio/análise , Poluentes Químicos da Água/análise
10.
Environ Sci Technol ; 55(19): 13061-13071, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34554730

RESUMO

The transport and fate of hydrophobic organic contaminants (HOCs) in the marine environment are closely linked to organic carbon (OC) cycling processes. We investigated the influence of marine versus terrestrial OC origin on HOC fluxes at two Baltic Sea coastal sites with different relative contributions of terrestrial and marine OC. Stronger sorption of the more than four-ring polycyclic aromatic hydrocarbons and penta-heptachlorinated polychlorinated biphenyls (PCBs) was observed at the marine OC-dominated site. The site-specific partition coefficients between sediment OC and water were 0.2-1.0 log units higher at the marine OC site, with the freely dissolved concentrations in the sediment pore-water 2-10 times lower, when compared with the terrestrial OC site. The stronger sorption at the site characterized with marine OC was most evident for the most hydrophobic PCBs, leading to reduced fluxes of these compounds from sediment to water. According to these results, future changes in OC cycling because of climate change, leading to increased input of terrestrial OC to the marine system, can have consequences for the availability and mobility of HOCs in aquatic systems and thereby also for the capacity of sediments to store HOCs.


Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Carbono , Monitoramento Ambiental , Sedimentos Geológicos , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
11.
Arch Environ Contam Toxicol ; 81(1): 142-154, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33999217

RESUMO

In Brazil, environmental occurrence of micropollutants, such as pharmaceuticals, is rarely studied, and these compounds are not part of national water quality guidelines. In this study, we evaluated the occurrence of micropollutants in the Paraibuna River, located in the southeast region of Brazil, which is the most populated region of the country. Surface water samples were taken every 3 months for 1.5 years at four different sites downstream the city of Juiz de Fora. A total of 28 compounds were analyzed on an UHPLC-Orbitrap-MS/MS using a direct injection method. Nine substances were found in at least one water sample, with concentrations ranging from 11 to 4471 ng L-1. The micropollutants found in the river were not detected at the reference site upstream of the city, except for caffeine, which was present at low concentrations in the reference site. Additionally, a nontarget screening of the river samples was applied, which resulted in the identification of 116 chemicals, most of which were pharmaceuticals. Concentrations of most of the micropollutants varied with season and correlated significantly with rainfall events, which caused dilution in the river. The highest observed concentrations were for pharmaceuticals used for treating chronic diseases, such as metformin, which is used to treat diabetes, and were among the most consumed in Juiz de Fora during the study period. Moderate ecotoxicological risks were found for metformin, oxazepam, triclosan, and tramadol. Considering the complex mixture of micropollutants in the environment, more knowledge is needed to elucidate their ecological risk in aquatic ecosystems.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Brasil , Cidades , Ecossistema , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
12.
Open Res Eur ; 1: 154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645192

RESUMO

By 2050, the global population is predicted to reach nine billion, with almost three quarters living in cities. The road to 2050 will be marked by changes in land use, climate, and the management of water and food across the world. These global changes (GCs) will likely affect the emissions, transport, and fate of chemicals, and thus the exposure of the natural environment to chemicals. ECORISK2050 is a Marie Sklodowska-Curie Innovative Training Network that brings together an interdisciplinary consortium of academic, industry and governmental partners to deliver a new generation of scientists, with the skills required to study and manage the effects of GCs on chemical risks to the aquatic environment. The research and training goals are to: (1) assess how inputs and behaviour of chemicals from agriculture and urban environments are affected by different environmental conditions, and how different GC scenarios will drive changes in chemical risks to human and ecosystem health; (2) identify short-to-medium term adaptation and mitigation strategies, to abate unacceptable increases to risks, and (3) develop tools for use by industry and policymakers for the assessment and management of the impacts of GC-related drivers on chemical risks. This project will deliver the next generation of scientists, consultants, and industry and governmental decision-makers who have the knowledge and skillsets required to address the changing pressures associated with chemicals emitted by agricultural and urban activities, on aquatic systems on the path to 2050 and beyond.

13.
Environ Sci Technol ; 54(22): 14380-14392, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33104348

RESUMO

Assessment of micropollutant biodegradation is essential to determine the persistence of potentially hazardous chemicals in aquatic ecosystems. We studied the dissipation half-lives of 10 micropollutants in sediment-water incubations (based on the OECD 308 standard) with sediment from two European rivers sampled upstream and downstream of wastewater treatment plant (WWTP) discharge. Dissipation half-lives (DT50s) were highly variable between the tested compounds, ranging from 1.5 to 772 days. Sediment from one river sampled downstream from the WWTP showed the fastest dissipation of all micropollutants after sediment RNA normalization. By characterizing sediment bacteria using 16S rRNA sequences, bacterial community composition of a sediment was associated with its capacity for dissipating micropollutants. Bacterial amplicon sequence variants of the genera Ralstonia, Pseudomonas, Hyphomicrobium, and Novosphingobium, which are known degraders of contaminants, were significantly more abundant in the sediment incubations where fast dissipation was observed. Our study illuminates the limitations of the OECD 308 standard to account for variation of dissipation rates of micropollutants due to differences in bacterial community composition. This limitation is problematic particularly for those compounds with DT50s close to regulatory persistence criteria. Thus, it is essential to consider bacterial community composition as a source of variability in regulatory biodegradation and persistence assessments.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Bactérias/genética , Ecossistema , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/análise
15.
Environ Sci Technol ; 54(9): 5467-5479, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32251587

RESUMO

Hyporheic zones are the water-saturated flow-through subsurfaces of rivers which are characterized by the simultaneous occurrence of multiple physical, biological, and chemical processes. Two factors playing a role in the hyporheic attenuation of organic contaminants are sediment bedforms (a major driver of hyporheic exchange) and the composition of the sediment microbial community. How these factors act on the diverse range of organic contaminants encountered downstream from wastewater treatment plants is not well understood. To address this knowledge gap, we investigated dissipation half-lives (DT50s) of 31 substances (mainly pharmaceuticals) under different combinations of bacterial diversity and bedform-induced hyporheic flow using 20 recirculating flumes in a central composite face factorial design. By combining small-volume pore water sampling, targeted analysis, and suspect screening, along with quantitative real-time PCR and time-resolved amplicon Illumina MiSeq sequencing, we determined a comprehensive set of DT50s, associated bacterial communities, and microbial transformation products. The resulting DT50s of parent compounds ranged from 0.5 (fluoxetine) to 306 days (carbamazepine), with 20 substances responding significantly to bacterial diversity and four to both diversity and hyporheic flow. Bacterial taxa that were associated with biodegradation included Acidobacteria (groups 6, 17, and 22), Actinobacteria (Nocardioides and Illumatobacter), Bacteroidetes (Terrimonas and Flavobacterium) and diverse Proteobacteria (Pseudomonadaceae, Sphingomonadaceae, and Xanthomonadaceae). Notable were the formation of valsartan acid from irbesartan and valsartan, the persistence of N-desmethylvenlafaxine across all treatments, and the identification of biuret as a novel transformation product of metformin. Twelve additional target transformation products were identified, which were persistent in either pore or surface water of at least one treatment, indicating their environmental relevance.


Assuntos
Águas Residuárias , Poluentes Químicos da Água/análise , Bactérias , Rios , Microbiologia da Água
16.
Environ Sci Process Impacts ; 21(12): 2093-2108, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31631204

RESUMO

Enhancing the understanding of the fate of wastewater-derived organic micropollutants in rivers is crucial to improve risk assessment, regulatory decision making and river management. Hyporheic exchange and sediment bacterial diversity are two factors gaining increasing importance as drivers for micropollutant degradation, but are complex to study in field experiments and usually ignored in laboratory tests aimed to estimate environmental half-lives. Flume mesocosms are useful to investigate micropollutant degradation processes, bridging the gap between the field and batch experiments. However, few studies have used flumes in this context. We present a novel experimental setup using 20 recirculating flumes and a response surface model to study the influence of hyporheic exchange and sediment bacterial diversity on half-lives of the anti-epileptic drug carbamazepine (CBZ) and the artificial sweetener acesulfame (ACS). The effect of bedform-induced hyporheic exchange was tested by three treatment levels differing in number of bedforms (0, 3 and 6). Three levels of sediment bacterial diversity were obtained by diluting sediment from the River Erpe in Berlin, Germany, with sand (1 : 10, 1 : 1000 and 1 : 100 000). Our results show that ACS half-lives were significantly influenced by sediment dilution and number of bedforms. Half-lives of CBZ were higher than ACS, and were significantly affected only by the sediment dilution variable, and thus by bacterial diversity. Our results show that (1) the flume-setup is a useful tool to study the fate of micropollutants in rivers, and that (2) higher hyporheic exchange and bacterial diversity in the sediment can increase the degradation of micropollutants in rivers.


Assuntos
Bactérias , Rios/microbiologia , Águas Residuárias/microbiologia , Microbiologia da Água/normas , Poluentes Químicos da Água/análise , Bactérias/classificação , Berlim , Biodiversidade , Sedimentos Geológicos/microbiologia , Alemanha , Meia-Vida , Rios/química , Águas Residuárias/análise
17.
Environ Sci Process Impacts ; 21(9): 1489-1497, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31389449

RESUMO

Persistence of chemical pollutants is difficult to measure in the field. Junge variability-lifetime relationships, correlating the relative standard deviation of measured concentrations with residence time, have been used to estimate persistence of air pollutants. Junge relationships for micropollutants in rivers could provide evidence that half-lives of compounds estimated from laboratory and field data are representative of half-lives in a specific system, location and time. Here, we explore the hypothesis that Junge relationships could exist for micropollutants in the Danube river using: (1) concentrations of six hypothetical chemicals modeled using the STREAM-EU fate and transport model, and (2) concentrations of nine micropollutants measured in the third Joint Danube Survey (JDS3) combined with biodegradation half-lives reported in the literature. Using STREAM-EU, we found that spatial and temporal variability in modeled concentrations was inversely correlated with half-life for the four micropollutants with half-lives ≤90 days. For these four modeled micropollutants, we found Junge relationships with slopes significantly different from zero in the temporal variability of concentrations at 88% of the 67 JDS3 measurement sites, and in the spatial variability of concentrations on 36% out of 365 modeled days. A Junge relationship significant at the 95% confidence level was not found in the spatial variability of nine micropollutants measured in the JDS3, nor in STREAM-EU-modeled concentrations extracted for the dates and locations of the JDS3. Nevertheless, our model scenarios suggest that Junge relationships might be found in future measurements of spatial and temporal variability of micropollutants, especially in temporal variability of pollutants measured downstream in the Danube river.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Modelos Teóricos
18.
Environ Sci Technol ; 53(16): 9533-9541, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31321968

RESUMO

Chlorinated paraffins (CPs) are industrial chemicals, subdivided into three categories: short chain (SCCPs), medium chain (MCCPs), and long chain (LCCPs) chlorinated paraffins. SCCPs are currently restricted in Europe and North America. MC and LCCPs are being used as substitution products, but there is a knowledge gap concerning their bioaccumulation potential in aquatic organisms. In this work, we performed laboratory bioconcentration (passive uptake) and bioaccumulation (including dietary uptake) experiments with Daphnia magna using five different CP technical substances. All tested CP technical substances were bioaccumulative in D. magna, with log BCF and log BAF values ranging between 6.7-7.0 and 6.5-7.0 (L kg lipid-1), respectively. An increase in carbon chain length and an increase in chlorine content (% w/w) of the CP technical substances had significant positive effects on the log BCF and log BAF values. For the different CP technical substances, 50% depuration was achieved after 2 to 10 h when D. magna were transferred to clean media. Our results show that SC, MC, and LCCPs are (very)bioaccumulative in aquatic organisms. We believe these data can aid the ongoing policy discussion concerning the environmental risk posed by CPs.


Assuntos
Organismos Aquáticos , Hidrocarbonetos Clorados , Animais , Daphnia , Monitoramento Ambiental , Europa (Continente) , América do Norte , Parafina
19.
Bull Environ Contam Toxicol ; 103(2): 292-301, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31243473

RESUMO

Reservoir sediment can work as both sink and source for contaminants. Once released into the water column, contaminants can be toxic to biota and humans. We investigate potential ecological risk to benthic organisms by metals contamination in six reservoirs in Southeast Brazil. Results of the bioavailable fraction of copper (Cu), chromium (Cr), cadmium (Cd), lead (Pb), zinc (Zn), and iron (Fe) in sediment samples are presented. Considering Cu, Cd, and Zn concentrations, about 6% of the samples exceeded the threshold effect levels of sediment quality guidelines. The comparison to sediment quality guidelines is conservative because we used a moderate metal extraction. Control of contaminant sources in these reservoirs is key because they are sources of water and food. The mixture toxicity assessment showed an increased incidence of toxicity to aquatic organisms showing that mixture toxicity should be taken into account in sediment assessment criteria.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Organismos Aquáticos/efeitos dos fármacos , Biota/efeitos dos fármacos , Brasil , Humanos , Medição de Risco , Clima Tropical
20.
Environ Toxicol Chem ; 38(8): 1803-1810, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31050018

RESUMO

In the present study a recently developed benthic flow-through chamber was used to assess the sediment-to-water flux of polycyclic aromatic hydrocarbons (PAHs) at 4 sites on the Swedish Baltic Sea coast. The flow-through chamber allows for assessment of the potential effect of bioturbation on the sediment-to-water flux of hydrophobic organic contaminants. The sediments at the 4 investigated sites have both varying contamination degree and densities of bioturbating organisms. The flux of individual PAHs measured with the flow-through chamber ranged between 21 and 510, 11 and 370, 3 and 9700, and 62 and 2300 ng m-2 d-1 for the 4 sites. To assess the potential effect of bioturbation on the sediment-to-water flux, 3 flow-through and closed chambers were deployed in parallel at each site. The activity of benthic organisms is attenuated or halted because of depletion of oxygen in closed benthic chambers. Therefore, the discrepancy in flux measured with the 2 different chamber designs was used as an indication of a possible effect of bioturbation. A potential effect of bioturbation on the sediment-to-water flux by a factor of 3 to 55 was observed at sites with a high density of bioturbating organisms (e.g., Marenzelleria spp., Monoporeia affinis, and Macoma balthica of approximately 860-1200 individuals m-2 ) but not at the site with much lower organism density (<200 individuals m-2 ). One site had a high organism density and a low potential effect of bioturbation, which we hypothesize to be caused by the dominance of oligochaetes/polychaetes at this site because worms (Marenzelleria spp.) reach deeper into the sediment than native crustaceans and mollusks. Environ Toxicol Chem 2019;38:1803-1810. © 2019 SETAC.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Invertebrados/crescimento & desenvolvimento , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Anfípodes/crescimento & desenvolvimento , Animais , Bivalves/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Oceanos e Mares , Poliquetos/crescimento & desenvolvimento , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA