Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Cancer Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536067

RESUMO

PURPOSE: Shallow whole genome sequencing (sWGS) can detect copy number (CN) aberrations. In high-grade serous ovarian (HGSOC) sWGS identified CN signatures such as homologous recombination deficiency (HRD) to direct therapy. We applied sWGS with targeted sequencing to p53abn endometrial cancers (ECs) to identify additional prognostic stratification and therapeutic opportunities. EXPERIMENTAL DESIGN: sWGS and targeted panel sequencing was performed on formalin-fixed paraffin-embedded p53abn ECs. CN alterations, mutational data and CN signatures were derived, and associations to clinicopathologic and outcomes data were assessed. RESULTS: In 187 p53abn ECs, 5 distinct CN signatures were identified. Signature 5 was associated with BRCA1/2 CN loss with features similar to HGSOC HRD signature. 22% potential HRD cases were identified, 35 patients with signature 5, and 8 patients with BRCA1/2 somatic mutations. Signatures 3 and 4 were associated with a high ploidy state, and CCNE1, ERBB2 and MYC amplifications, with mutations in PIK3CA enriched in signature 3. We observed improved overall survival (OS) for patients with signature 2 and worse OS for signatures 1 and 3. 28% of patients had CCNE1 amplification and this subset was enriched with carcinosarcoma histotype. 34% of patients, across all histotypes, had ERBB2 amplification and/or HER2 overexpression on immunohistochemistry, which was associated with worse outcomes. Mutations in PPP2R1A (29%) and FBXW7 (16%) were among the top 5 most common mutations. CONCLUSIONS: sWGS and targeted sequencing identified therapeutic opportunities in 75% of p53abn EC patients. Further research is needed to determine the efficacy of treatments targeting these identified pathways within p53abn ECs.

2.
Front Genet ; 13: 858396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495172

RESUMO

The ultrarare hepatoblastoma (HB) is the most common pediatric liver cancer. HB risk is related to a few rare syndromes, and the molecular bases remain elusive for most cases. We investigated the burden of rare damaging germline variants in 30 Brazilian patients with HB and the presence of additional clinical signs. A high frequency of prematurity (20%) and birth defects (37%), especially craniofacial (17%, including craniosynostosis) and kidney (7%) anomalies, was observed. Putative pathogenic or likely pathogenic monoallelic germline variants mapped to 10 cancer predisposition genes (CPGs: APC, CHEK2, DROSHA, ERCC5, FAH, MSH2, MUTYH, RPS19, TGFBR2 and VHL) were detected in 33% of the patients, only 40% of them with a family history of cancer. These findings showed a predominance of CPGs with a known link to gastrointestinal/colorectal and renal cancer risk. A remarkable feature was an enrichment of rare damaging variants affecting different classes of DNA repair genes, particularly those known as Fanconi anemia genes. Moreover, several potentially deleterious variants mapped to genes impacting liver functions were disclosed. To our knowledge, this is the largest assessment of rare germline variants in HB patients to date, contributing to elucidate the genetic architecture of HB risk.

3.
Front Oncol ; 10: 556, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32432034

RESUMO

Hepatoblastoma is a very rare embryonal liver cancer supposed to arise from the impairment of hepatocyte differentiation during embryogenesis. In this study, we investigated by exome sequencing the burden of somatic mutations in a cohort of 10 hepatoblastomas, including a congenital case. Our data disclosed a low mutational background and pointed out to a novel set of candidate genes for hepatoblastoma biology, which were shown to impact gene expression levels. Only three recurrently mutated genes were detected: CTNNB1 and two novel candidates, CX3CL1 and CEP164. A relevant finding was the identification of a recurrent mutation (A235G) in two hepatoblastomas at the CX3CL1 gene; evaluation of RNA and protein expression revealed upregulation of CX3CL1 in tumors. The analysis was replicated in two independents cohorts, substantiating that an activation of the CX3CL1/CX3CR1 pathway occurs in hepatoblastomas. In inflammatory regions of hepatoblastomas, CX3CL1/CX3CR1 were not detected in the infiltrated lymphocytes, in which they should be expressed in normal conditions, whereas necrotic regions exhibited negative labeling in tumor cells, but strongly positive infiltrated lymphocytes. Altogether, these data suggested that CX3CL1/CX3CR1 upregulation may be a common feature of hepatoblastomas, potentially related to chemotherapy response and progression. In addition, three mutational signatures were identified in hepatoblastomas, two of them with predominance of either the COSMIC signatures 1 and 6, found in all cancer types, or the COSMIC signature 29, mostly related to tobacco chewing habit; a third novel mutational signature presented an unspecific pattern with an increase of C>A mutations. Overall, we present here novel candidate genes for hepatoblastoma, with evidence that CX3CL1/CX3CR1 chemokine signaling pathway is likely involved with progression, besides reporting specific mutational signatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA