Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Vaccine ; 40(30): 4026-4037, 2022 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-35641357

RESUMO

The All-Japan Influenza Vaccine Study Group has been developing a more effective vaccine than the current split vaccines for seasonal influenza virus infection. In the present study, the efficacy of formalin- and/or ß-propiolactone-inactivated whole virus particle vaccines for seasonal influenza was compared to that of the current ether-treated split vaccines in a nonhuman primate model. The monovalent whole virus particle vaccines or split vaccines of influenza A virus (H1N1) and influenza B virus (Victoria lineage) were injected subcutaneously into naïve cynomolgus macaques twice. The whole virus particle vaccines induced higher titers of neutralizing antibodies against H1N1 influenza A virus and influenza B virus in the plasma of macaques than did the split vaccines. At challenge with H1N1 influenza A virus or influenza B virus, the virus titers in nasal swabs and the increases in body temperatures were lower in the macaques immunized with the whole virus particle vaccine than in those immunized with the split vaccine. Repertoire analyses of immunoglobulin heavy chain genes demonstrated that the number of B-lymphocyte subclones was increased in macaques after the 1st vaccination with the whole virus particle vaccine, but not with the split vaccine, indicating that the whole virus particle vaccine induced the activation of vaccine antigen-specific B-lymphocytes more vigorously than did the split vaccine at priming. Thus, the present findings suggest that the superior antibody induction ability of the whole virus particle vaccine as compared to the split vaccine is attributable to its stimulatory properties on the subclonal differentiation of antigen-specific B-lymphocytes.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos B , Genes de Imunoglobulinas , Humanos , Influenza Humana/prevenção & controle , Macaca fascicularis , Vacinação , Vacinas de Produtos Inativados , Vírion
2.
Vaccine ; 39(29): 3940-3951, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34090697

RESUMO

Current detergent or ether-disrupted split vaccines (SVs) for influenza do not always induce adequate immune responses, especially in young children. This contrasts with the whole virus particle vaccines (WPVs) originally used against influenza that were immunogenic in both adults and children but were replaced by SV in the 1970s due to concerns with reactogenicity. In this study, we re-evaluated the immunogenicity of WPV and SV, prepared from the same batch of purified influenza virus, in cynomolgus macaques and confirmed that WPV is superior to SV in priming potency. In addition, we compared the ability of WPV and SV to induce innate immune responses, including the maturation of dendritic cells (DCs) in vitro. WPV stimulated greater production of inflammatory cytokines and type-I interferon in immune cells from mice and macaques compared to SV. Since these innate responses are likely triggered by the activation of pattern recognition receptors (PRRs) by viral RNA, the quantity and quality of viral RNA in each vaccine were assessed. Although the quantity of viral RNA was similar in the two vaccines, the amount of viral RNA of a length that can be recognized by PRRs was over 100-fold greater in WPV than in SV. More importantly, 1000-fold more viral RNA was delivered to DCs by WPV than by SV when exposed to preparations containing the same amount of HA protein. Furthermore, WPV induced up-regulation of the DC maturation marker CD86 on murine DCs, while SV did not. The present results suggest that the activation of antigen-presenting DCs, by PRR-recognizable viral RNA contained in WPV is responsible for the effective priming potency of WPV observed in naïve mice and macaques. WPV is thus recommended as an alternative option for seasonal influenza vaccines, especially for children.


Assuntos
Vacinas contra Influenza , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Anticorpos Antivirais , Células Apresentadoras de Antígenos , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , RNA Viral , Vacinas de Produtos Inativados , Vírion
3.
Vaccine ; 37(15): 2158-2166, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30857932

RESUMO

In contrast to current ether- or detergent-disrupted "split" vaccines (SVs) for influenza, inactivated whole influenza virus particle vaccines (WPVs) retain the original virus structure and components and as such may confer similar immunity to natural infection. In a collaboration between academia and industry, the potential of WPV as a new seasonal influenza vaccine was investigated. Each of the four seasonal influenza vaccine manufacturers in Japan prepared WPVs and SVs from the same batches of purified influenza virus. Both mice and monkeys vaccinated with the WPVs exhibited superior immune responses to those vaccinated with the corresponding SVs. Vaccination with A/California/07/2009 (H1N1) WPV enabled mice to survive a lethal challenge dose of homologous virus whereas those vaccinated with SV succumbed to infection within 6 days. Furthermore, mice vaccinated with WPV induced substantial numbers of multifunctional CD8+ T cells, important for control of antigenically drifted influenza virus strains. In addition, cytokines and chemokines were detected at early time points in the sera of mice vaccinated with WPV but not in those animals vaccinated with SV. These results indicate that WPVs induce enhanced innate and adaptive immune responses compared to equivalent doses of SVs. Notably, WPV at one fifth of the dose of SV was able to induce potent immunity with limited production of IL-6, one of the pyrogenic cytokines. We thus propose that WPVs with balanced immunogenicity and safety may set a new global standard for seasonal influenza vaccines.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Influenza/imunologia , Interleucina-6/sangue , Infecções por Orthomyxoviridae/prevenção & controle , Vírion/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Quimiocinas/sangue , Citocinas/sangue , Feminino , Humanos , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Interleucina-6/imunologia , Japão , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
4.
PLoS One ; 7(12): e51633, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23236521

RESUMO

For protection from HIV-1 infection, a vaccine should elicit both humoral and cell-mediated immune responses. A novel vaccine regimen and adjuvant that induce high levels of HIV-1 Env-specific T cell and antibody (Ab) responses was developed in this study. The prime-boost regimen that used combinations of replication-competent vaccinia LC16m8Δ (m8Δ) and Sendai virus (SeV) vectors expressing HIV-1 Env efficiently produced both Env-specific CD8(+) T cells and anti-Env antibodies, including neutralizing antibodies (nAbs). These results sharply contrast with vaccine regimens that prime with an Env expressing plasmid and boost with the m8Δ or SeV vector that mainly elicited cellular immunities. Moreover, co-priming with combinations of m8Δs expressing Env or a membrane-bound human CD40 ligand mutant (CD40Lm) enhanced Env-specific CD8(+) T cell production, but not anti-Env antibody production. In contrast, priming with an m8Δ that coexpresses CD40Lm and Env elicited more anti-Env Abs with higher avidity, but did not promote T cell responses. These results suggest that the m8Δ prime/SeV boost regimen in conjunction with CD40Lm expression could be used as an immunization platform for driving both potent cellular and humoral immunities against pathogens such as HIV-1.


Assuntos
Vacinas contra a AIDS/imunologia , Ligante de CD40/imunologia , HIV-1 , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos T CD8-Positivos/imunologia , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos , Células HEK293 , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Vírus Sendai , Vaccinia virus
5.
Mol Microbiol ; 77(4): 855-72, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20545857

RESUMO

Chromobacterium violaceum is a Gram-negative bacterium that causes fatal septicaemia in humans and animals. C. violaceum ATCC 12472 possesses genes associated with two distinct type III secretion systems (T3SSs). One of these systems is encoded by Chromobacterium pathogenicity islands 1 and 1a (Cpi-1/-1a), another is encoded by Chromobacterium pathogenicity island 2 (Cpi-2). Here we show that C. violaceum causes fulminant hepatitis in a mouse infection model, and Cpi-1/-1a-encoded T3SS is required for its virulence. In addition, using C. violaceum strains with defined mutations in the genes that encode the Cpi-1/-1a or Cpi-2 locus in combination with cultured mammalian cell lines, we found that C. violaceum is able to induce cytotoxicity in a Cpi-1/-1a-dependent manner. Characterization of Chromobacterium-induced cytotoxicity revealed that cell lysis by C. violaceum infection involves the formation of pore structures on the host cell membrane, as demonstrated by protection by cytotoxicity in the presence of osmoprotectants. Finally, we demonstrated that CipB, a Cpi-1/-1a effector, is implicated in translocator-mediated pore formation and the ability of CipB to form a pore is essential for Chromobacterium-induced cytotoxicity. These results strongly suggest that Cpi-1/-1a-encoded T3SS is a virulence determinant that causes fatal infection by the induction of cell death in hepatocytes.


Assuntos
Sistemas de Secreção Bacterianos , Chromobacterium/crescimento & desenvolvimento , Chromobacterium/genética , Ilhas Genômicas , Fatores de Virulência/metabolismo , Animais , Secreções Corporais , Morte Celular , Chromobacterium/patogenicidade , Modelos Animais de Doenças , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Hepatite Animal/microbiologia , Hepatite Animal/patologia , Hepatócitos/microbiologia , Hepatócitos/fisiologia , Camundongos , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA