Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 22(4): 967-978, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29386138

RESUMO

Maintenance of metabolic homeostasis requires adaption of gene regulation to the cellular energy state via transcriptional regulators. Here, we identify a role of ceramide synthase (CerS) Schlank, a multiple transmembrane protein containing a catalytic lag1p motif and a homeodomain, which is poorly studied in CerSs, as a transcriptional regulator. ChIP experiments show that it binds promoter regions of lipases lipase3 and magro via its homeodomain. Mutation of nuclear localization site 2 (NLS2) within the homeodomain leads to loss of DNA binding and deregulated gene expression, and NLS2 mutants can no longer adjust the transcriptional response to changing lipid levels. This mechanism is conserved in mammalian CerS2 and emphasizes the importance of the CerS protein rather than ceramide synthesis. This study demonstrates a double role of CerS Schlank as an enzyme and a transcriptional regulator, sensing lipid levels and transducing the information to the level of gene expression.


Assuntos
Ceramidas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Esfingosina N-Aciltransferase/genética , Animais
2.
Mol Biol Cell ; 29(4): 396-407, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29282281

RESUMO

Inherited peroxisomal biogenesis disorders (PBDs) are characterized by the absence of functional peroxisomes. They are caused by mutations of peroxisomal biogenesis factors encoded by Pex genes, and result in childhood lethality. Owing to the many metabolic functions fulfilled by peroxisomes, PBD pathology is complex and incompletely understood. Besides accumulation of peroxisomal educts (like very-long-chain fatty acids [VLCFAs] or branched-chain fatty acids) and lack of products (like bile acids or plasmalogens), many peroxisomal defects lead to detrimental mitochondrial abnormalities for unknown reasons. We generated Pex19 Drosophila mutants, which recapitulate the hallmarks of PBDs, like absence of peroxisomes, reduced viability, neurodegeneration, mitochondrial abnormalities, and accumulation of VLCFAs. We present a model of hepatocyte nuclear factor 4 (Hnf4)-induced lipotoxicity and accumulation of free fatty acids as the cause for mitochondrial damage in consequence of peroxisome loss in Pex19 mutants. Hyperactive Hnf4 signaling leads to up-regulation of lipase 3 and enzymes for mitochondrial ß-oxidation. This results in enhanced lipolysis, elevated concentrations of free fatty acids, maximal ß-oxidation, and mitochondrial abnormalities. Increased acid lipase expression and accumulation of free fatty acids are also present in a Pex19-deficient patient skin fibroblast line, suggesting the conservation of key aspects of our findings.


Assuntos
Lipólise/genética , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Transtornos Peroxissômicos/genética , Peroxissomos/metabolismo , Animais , Modelos Animais de Doenças , Drosophila , Ácidos Graxos/metabolismo , Humanos , Mutação , Transtornos Peroxissômicos/diagnóstico
3.
FEBS Lett ; 590(7): 971-81, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26950647

RESUMO

Drosophila Ceramide Synthase (CerS) Schlank regulates both ceramide synthesis and fat metabolism. Schlank contains a catalytic lag1p motif and, like many CerS in other species, a homeodomain of unknown function. Here, we show that the Drosophila CerS Schlank is imported into the nucleus and requires two nuclear localization signals (NLSs) within its homeodomain and functional Importin-ß import machinery. Expression of Schlank variants containing the homeodomain without functional lag1p motif rescued the fat metabolism phenotype of schlank mutants whereas a variant with a mutated NLS site did not rescue. Thus, the homeodomain of Schlank is involved in the regulation of lipid metabolism independent of the catalytic lag1p motif.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Metabolismo dos Lipídeos , Sinais de Localização Nuclear/metabolismo , Esfingosina N-Aciltransferase/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Domínio Catalítico , Linhagem Celular , Núcleo Celular/enzimologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Corpo Adiposo/citologia , Corpo Adiposo/enzimologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutação , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Esfingosina N-Aciltransferase/antagonistas & inibidores , Esfingosina N-Aciltransferase/química , Esfingosina N-Aciltransferase/genética , beta Carioferinas/antagonistas & inibidores , beta Carioferinas/genética , beta Carioferinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA