Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38798570

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder and lacks disease-modifying therapies. We developed a Drosophila model for identifying novel glial-based therapeutic targets for PD. Human alpha-synuclein is expressed in neurons and individual genes are independently knocked down in glia. We performed a forward genetic screen, knocking down the entire Drosophila kinome in glia in alpha-synuclein expressing flies. Among the top hits were five genes (Ak1, Ak6, Adk1, Adk2, and awd) involved in adenosine metabolism. Knockdown of each gene improved locomotor dysfunction, rescued neurodegeneration, and increased brain adenosine levels. We determined that the mechanism of neuroprotection involves adenosine itself, as opposed to a downstream metabolite. We dove deeper into the mechanism for one gene, Ak1, finding rescue of dopaminergic neuron loss, alpha-synuclein aggregation, and bioenergetic dysfunction after glial Ak1 knockdown. We performed metabolomics in Drosophila and in human PD patients, allowing us to comprehensively characterize changes in purine metabolism and identify potential biomarkers of dysfunctional adenosine metabolism in people. These experiments support glial adenosine as a novel therapeutic target in PD.

2.
J Vis Exp ; (199)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37811970

RESUMO

Non-motor symptoms in Parkinson's disease (PD) are common, difficult to treat, and significantly impair quality of life. One prevalent non-motor symptom is constipation, which can precede the diagnosis of PD by years or even decades. Constipation has been underexplored in animal models of PD and lacks specific therapies. This assay utilizes a Drosophila model of PD in which human alpha-synuclein is expressed under a pan-neuronal driver. Flies expressing alpha-synuclein develop the hallmark features of PD: the loss of dopaminergic neurons, motor impairment, and alpha-synuclein inclusions. This protocol outlines a method for studying constipation in these flies. Flies are placed on fly food with a blue color additive overnight and then transferred to standard food the following day. They are subsequently moved to new vials with standard fly food every hour for 8 h. Before each transfer, the percentage of blue-colored fecal spots compared to the total fecal spots on the vial wall is calculated. Control flies that lack alpha-synuclein expel all the blue dye hours before flies expressing alpha-synuclein. Additionally, the passage of blue-colored food from the gut can be monitored with simple photography. The simplicity of this assay enables its use in forward genetic or chemical screens to identify modifiers of constipation in Drosophila.


Assuntos
Doença de Parkinson , Animais , Humanos , Doença de Parkinson/genética , alfa-Sinucleína/genética , Drosophila/fisiologia , Qualidade de Vida , Neurônios Dopaminérgicos , Constipação Intestinal/etiologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA