Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140030

RESUMO

Celecoxib (CCB), a cyclooxygenase-2 inhibitor, is capable of reducing oxidative stress and vascular endothelial growth factor (VEGF) expression in retinal cells and has been shown to be effective in the treatment of diabetic retinopathy and age-related macular degeneration. However, the ocular bioavailability of CCB is hampered due to its very low aqueous solubility. In a previous study, we developed 0.5% (w/v) aqueous CCB eye drop microsuspensions (MS) containing randomly methylated ß-cyclodextrin (RMßCD) or γ-cyclodextrin (γCD) and hyaluronic acid (HA) as ternary CCB/CD/HA nanoaggregates. Both formulations exhibited good physicochemical properties. Therefore, we further investigated their cytotoxicity and efficacy in a human retina cell line in this study. At a CCB concentration of 1000 µg/mL, both CCB/RMßCD and CCB/γCD eye drop MS showed low hemolysis activity (11.1 ± 0.3% or 4.9 ± 0.2%, respectively). They revealed no signs of causing irritation and were nontoxic to retinal pigment epithelial cells. Moreover, the CCB eye drop MS exhibited significant anti-VEGF activity by reducing VEGF mRNA and protein levels compared to CCB suspended in phosphate buffer saline. The ex vivo transscleral diffusion demonstrated that a high quantity of CCB (112.47 ± 37.27 µg/mL) from CCB/γCD eye drop MS was deposited in the porcine sclera. Our new findings suggest that CCB/CD eye drop MS could be safely delivered to the ocular tissues and demonstrate promising eye drop formulations for retinal disease treatment.

2.
Int J Pharm ; 645: 123394, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689255

RESUMO

Effective antifungal therapy for the treatment of fungal keratitis requires a high drug concentration at the corneal surface. However, the use of natural ß-cyclodextrin (ßCD) in the preparation of aqueous eye drop formulations for treating fungal keratitis is limited by its low aqueous solubility. Here, we synthesized water-soluble anionic ßCD derivatives capable of forming water-soluble complexes and evaluated the solubility, cytotoxicity, and antifungal efficacy of drug prepared using the ßCD derivative. To achieve this, a citric acid crosslinked ßCD (polyCTR-ßCD) was successfully synthesized, and the aqueous solubilities of selected antifungal drugs, including voriconazole, miconazole (MCZ), itraconazole, and amphotericin B, in polyCTR-ßCD and analogous ßCD solutions were evaluated. Among the drugs tested, complexation of MCZ with polyCTR-ßCD (MCZ/polyCTR-ßCD) increased MCZ aqueous solubility by 95-fold compared with that of MCZ/ßCD. The inclusion complex formation of MCZ/ßCD and MCZ/polyCTR-ßCD was confirmed by spectroscopic techniques. Additionally, the nanoaggregates of saturated MCZ/polyCTR-ßCD and MCZ/ßCD solutions were observed using dynamic light scattering and transmission electron microscopy. Moreover, MCZ/polyCTR-ßCD solution exhibited good mucoadhesion, sustained drug release, and high drug permeation of porcine cornea ex vivo. Hen's Egg test-chorioallantoic membrane assay and cell viability study using Statens Seruminstitut Rabbit Cornea cell line showed that both MCZ/polyCTR-ßCD and MCZ/ßCD exhibited no sign of irritation and non-toxic to cell line. Additionally, antifungal activity evaluation demonstrated that all isolated fungi, including Candida albicans, Aspergillus flavus, and Fusarium solani, were susceptible to MCZ/polyCTR-ßCD. Overall, the results showed that polyCTR-ßCD could be a promising nanocarrier for the ocular delivery of MCZ.

3.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768671

RESUMO

Voriconazole (VCZ) is a broad-spectrum antifungal agent used to treat ocular fungal keratitis. However, VCZ has low aqueous solubility and chemical instability in aqueous solutions. This study aimed to develop VCZ eye drop formulations using cyclodextrin (CD) and water-soluble polymers, forming CD complex aggregates to improve the aqueous solubility and chemical stability of VCZ. The VCZ solubility was greatly enhanced using sulfobutyl ether ß-cyclodextrin (SBEßCD). The addition of polyvinyl alcohol (PVA) showed a synergistic effect on VCZ/SBEßCD solubilization and a stabilization effect on the VCZ/SBEßCD complex. The formation of binary VCZ/SBEßCD and ternary VCZ/SBEßCD/PVA complexes was confirmed by spectroscopic techniques and in silico studies. The 0.5% w/v VCZ eye drop formulations were developed consisting of 6% w/v SBEßCD and different types and concentrations of PVA. The VCZ/SBEßCD systems containing high-molecular-weight PVA prepared under freeze-thaw conditions (PVA-H hydrogel) provided high mucoadhesion, sustained release, good ex vivo permeability through the porcine cornea and no sign of irritation. Additionally, PVA-H hydrogel was effective against the filamentous fungi tested. The stability study revealed that our VCZ eye drops provide a shelf-life of more than 2.5 years at room temperature, while a shelf-life of only 3.5 months was observed for the extemporaneous Vfend® eye drops.


Assuntos
Ciclodextrinas , Álcool de Polivinil , Animais , Suínos , Voriconazol/farmacologia , Solubilidade , Soluções Oftálmicas , Ciclodextrinas/química , Córnea , Hidrogéis
4.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36558897

RESUMO

Fungal infections are an extremely serious health problem, particularly in patients with compromised immune systems. Most antifungal agents have low aqueous solubility, which may hamper their bioavailability. Their complexation with cyclodextrins (CDs) could increase the solubility of antifungals, facilitating their antifungal efficacy. Nanoparticulate systems are promising carriers for antifungal delivery due to their ability to overcome the drawbacks of conventional dosage forms. CD-based nanocarriers could form beneficial combinations of CDs and nanoparticulate platforms. These systems have synergistic or additive effects regarding improved drug loading, enhanced chemical stability, and enhanced drug permeation through membranes, thereby increasing the bioavailability of drugs. Here, an application of CD in antifungal drug formulations is reviewed. CD-based nanocarriers, such as nanoparticles, liposomes, nanoemulsions, nanofibers, and in situ gels, enhancing antifungal activity in a controlled-release manner and possessing good toxicological profiles, are described. Additionally, the examples of current, updated CD-based nanocarriers loaded with antifungal drugs for delivery by various routes of administration are discussed and summarized.

5.
Molecules ; 27(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897940

RESUMO

Fenofibrate (FE) has been shown to markedly reduce the progression of diabetic retinopathy and age-related macular degeneration in clinical trials and animal models. Owing to the limited aqueous solubility of FE, it may hamper ocular bioavailability and result in low efficiency to treat such diseases. To enhance the solubility of FE, water-soluble FE/cyclodextrin (CD) complex formation was determined by a phase-solubility technique. Randomly methylated-ß-CD (RMßCD) exhibited the best solubility and the highest complexation efficiency (CE) for FE. Additionally, water-soluble polymers (i.e., hydroxypropyl methyl cellulose and polyvinyl alcohol [PVA]) enhanced the solubility of FE/RMßCD complexes. Solid- and solution-state characterizations were performed to elucidate and confirm the formation of inclusion FE/RMßCD complex. FE-loaded Eudragit® nanoparticle (EuNP) dispersions and suspensions were developed. The physicochemical properties (i.e., pH, osmolality, viscosity, particle size, size distribution, and zeta potential) were within acceptable ranges. Moreover, in vitro mucoadhesion, in vitro release, and in vitro permeation studies revealed that the FE-loaded EuNP eye drop suspensions had excellent mucoadhesive properties and sustained FE release. The hemolytic activity, hen's egg test on chorioallantoic membrane assay, and in vitro cytotoxicity test showed that the FE formulations had low hemolytic activity, were cytocompatible, and were moderately irritable to the eyes. In conclusion, PVA-stabilized FE/RMßCD-loaded EuNP eye drop suspensions were successfully developed, warranting further in vivo testing.


Assuntos
Fenofibrato , Nanopartículas , beta-Ciclodextrinas , Animais , Galinhas , Feminino , Fenofibrato/farmacologia , Nanopartículas/química , Soluções Oftálmicas/química , Ácidos Polimetacrílicos , Solubilidade , Suspensões , Água , beta-Ciclodextrinas/química
6.
Pharm Dev Technol ; 27(1): 9-18, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895036

RESUMO

The poor aqueous solubility of irbesartan (IRB) and candesartan cilexetil (CAC) may hamper their bioavailability when orally or topically administered. Among several attempts, the promising nanoaggregate formation by γ-cyclodextrin (γCD) complexation of drugs in aqueous solution with or without water-soluble polymers was investigated. According to phase solubility studies, Soluplus® showed the highest complexation efficiency (CE) of drug/γCD complexes among the polymers tested. The aqueous solubility of IRB and CAC was markedly increased as a function of Soluplus® concentrations. The binary drug/γCD and ternary drug/γCD/Soluplus® complex formations were supported and confirmed by solid-state characterizations, including differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared (FT-IR) spectroscopy. The true inclusion mode was also proved by proton nuclear magnetic resonance (1H-NMR) spectroscopy. The nanoaggregate size and morphology of binary and ternary systems were observed using dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques. The size of these nanocarriers depends on the concentration of Soluplus®. The use of Soluplus® could significantly enhance drug solubility and stabilize complex nanoaggregates, which could be a prospective platform for drug delivery systems.


Assuntos
gama-Ciclodextrinas , Benzimidazóis , Compostos de Bifenilo , Varredura Diferencial de Calorimetria , Irbesartana , Polietilenoglicóis , Polivinil , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Tetrazóis , Difração de Raios X , gama-Ciclodextrinas/química
7.
Int J Pharm ; 586: 119589, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32634457

RESUMO

Asiaticoside (AS), an active herbal compound isolated from Centella asiatica, has the potential benefit in promoting type I collagen (COL I) synthesis and osteogenic differentiation in human periodontal ligament cells (HPDLCs). However, it has low aqueous solubility which may hamper the bioavailability. Thus, the aim of this study was to develop thermoresponsive in situ gel containing AS/cyclodextrin (CD) complexes. The non-encapsulated formulations consisted of AS/hydroxypropyl ß-CD (HPßCD) complexes and encapsulated formulations containing AS loaded sulfobutylether ß-CD/chitosan nanoparticles (SBEßCD/CS NPs) were prepared. The appearance, pH and viscosity of all formulations were within the acceptable range. All formulations formed relatively rapid sol-to-gel transition when contacted with simulated salivary fluid at body temperature. Compared to non-encapsulated formulations, in vitro gelation and rheological studies of encapsulated formulations displayed gel formation that remained longer with high mechanical strength. In vitro mucoadhesion and in vitro release studies revealed that nanoencapsulated in situ gel had excellent mucoadhesive property and could release AS in a sustained manner. These formulations exhibited no cytotoxic effects to HPDCLs. The SBEßCD/CS NPs containing low AS content could express the COL I synthesis. Thus, nanoencapsulated platform could serve as a promising carrier to deliver AS for periodontal tissue regeneration.


Assuntos
Quitosana , Ciclodextrinas , Humanos , Osteogênese , Ligamento Periodontal , Triterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA