Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Nat Cancer ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844817

RESUMO

Many individuals with cancer are resistant to immunotherapies. Here, we identify the gene encoding the pyrimidine salvage pathway enzyme cytidine deaminase (CDA) among the top upregulated metabolic genes in several immunotherapy-resistant tumors. We show that CDA in cancer cells contributes to the uridine diphosphate (UDP) pool. Extracellular UDP hijacks immunosuppressive tumor-associated macrophages (TAMs) through its receptor P2Y6. Pharmacologic or genetic inhibition of CDA in cancer cells (or P2Y6 in TAMs) disrupts TAM-mediated immunosuppression, promoting cytotoxic T cell entry and susceptibility to anti-programmed cell death protein 1 (anti-PD-1) treatment in resistant pancreatic ductal adenocarcinoma (PDAC) and melanoma models. Conversely, CDA overexpression in CDA-depleted PDACs or anti-PD-1-responsive colorectal tumors or systemic UDP administration (re)establishes resistance. In individuals with PDAC, high CDA levels in cancer cells correlate with increased TAMs, lower cytotoxic T cells and possibly anti-PD-1 resistance. In a pan-cancer single-cell atlas, CDAhigh cancer cells match with T cell cytotoxicity dysfunction and P2RY6high TAMs. Overall, we suggest CDA and P2Y6 as potential targets for cancer immunotherapy.

2.
ACS Appl Mater Interfaces ; 16(1): 66-83, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38163254

RESUMO

Over the past decades, the medical exploitation of nanotechnology has been largely increasing and finding its way into translational research and clinical applications. Despite their biomedical potential, uncertainties persist regarding the intricate role that nanomaterials may play on altering physiology in healthy and diseased tissues. Extracellular vesicles (EVs) are recognized as an important pathway for intercellular communication and known to be mediators of cellular stress. EVs are currently explored for targeted delivery of therapeutic agents, including nanoformulations, to treat and diagnose cancer or other diseases. Here, we aimed to investigate whether nanomaterials could have a possible impact on EV functionality, their safety, and whether EVs can play a role in nanomaterial toxicity profiles. To evaluate this, the impact of inorganic nanomaterial administration on EVs derived from murine melanoma and human breast cancer cells was tested. Cells were incubated with subtoxic concentrations of 4 different biomedically relevant inorganic nanoparticles (NPs): gold, silver, silicon dioxide, or iron oxide. The results displayed a clear NP and cell-type-dependent effect on increasing or decreasing EV secretion. Furthermore, the expression pattern of several EV-derived miRNAs was significantly changed upon NP exposure, compared to nontreated cells. Detailed pathway analysis and additional studies confirmed that EVs obtained from NP-exposed cells could influence immunological responses and cellular physiology. Together, these data reveal that NPs can have wide-ranging effects which can result in toxicity concerns or enhanced therapeutic potential as a secondary enhanced effect mediated and enhanced by EVs.


Assuntos
Vesículas Extracelulares , MicroRNAs , Nanopartículas , Neoplasias , Humanos , Camundongos , Animais , Vesículas Extracelulares/metabolismo , Neoplasias/tratamento farmacológico , MicroRNAs/metabolismo , Comunicação Celular
3.
J Clin Immunol ; 44(1): 2, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099988

RESUMO

The DNA polymerase δ complex (PolD), comprising catalytic subunit POLD1 and accessory subunits POLD2, POLD3, and POLD4, is essential for DNA synthesis and is central to genome integrity. We identified, by whole exome sequencing, a homozygous missense mutation (c.1118A > C; p.K373T) in POLD3 in a patient with Omenn syndrome. The patient exhibited severely decreased numbers of naïve T cells associated with a restricted T-cell receptor repertoire and a defect in the early stages of TCR recombination. The patient received hematopoietic stem cell transplantation at age 6 months. He manifested progressive neurological regression and ultimately died at age 4 years. We performed molecular and functional analysis of the mutant POLD3 and assessed cell cycle progression as well as replication-associated DNA damage. Patient fibroblasts showed a marked defect in S-phase entry and an enhanced number of double-stranded DNA break-associated foci despite normal expression levels of PolD components. The cell cycle defect was rescued by transduction with WT POLD3. This study validates autosomal recessive POLD3 deficiency as a novel cause of profound T-cell deficiency and Omenn syndrome.


Assuntos
DNA Polimerase III , Imunodeficiência Combinada Severa , Masculino , Humanos , Lactente , Pré-Escolar , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Ciclo Celular , Dano ao DNA , Fibroblastos
4.
Chem Soc Rev ; 52(14): 4672-4724, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37338993

RESUMO

The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.


Assuntos
Nanopartículas , Neoplasias , Gravidez , Humanos , Feminino , Portadores de Fármacos/uso terapêutico , Distribuição Tecidual , Placenta/patologia , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos
5.
NPJ Biofilms Microbiomes ; 9(1): 39, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37328504

RESUMO

Staphylococcus aureus is considered a high priority pathogen by the World Health Organization due to its high prevalence and the potential to form biofilms. Currently, the available treatments for S. aureus biofilm-associated infections do not target the extracellular polymeric substances (EPS) matrix. This matrix is a physical barrier to bactericidal agents, contributing to the increase of antimicrobial tolerance. The present work proposes the development of lipid nanoparticles encapsulating caspofungin (CAS) as a matrix-disruptive nanosystem. The nanoparticles were functionalized with D-amino acids to target the matrix. In a multi-target nano-strategy against S. aureus biofilms, CAS-loaded nanoparticles were combined with a moxifloxacin-loaded nanosystem, as an adjuvant to promote the EPS matrix disruption. In vitro and in vivo studies showed biofilm reduction after combining the two nanosystems. Besides, the combinatory therapy showed no signs of bacterial dissemination into vital organs of mice, while dissemination was observed for the treatment with the free compounds. Additionally, the in vivo biodistribution of the two nanosystems revealed their potential to reach and accumulate in the biofilm region, after intraperitoneal administration. Thus, this nano-strategy based on the encapsulation of matrix-disruptive and antibacterial agents is a promising approach to fight S. aureus biofilms.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Distribuição Tecidual , Biofilmes , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química
6.
Adv Healthc Mater ; 12(24): e2300594, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247322

RESUMO

The ability to improve nanoparticle delivery to solid tumors is an actively studied domain, where various mechanisms are looked into. In previous work, the authors have looked into nanoparticle size, tumor vessel normalization, and disintegration, and here it is aimed to continue this work by performing an in-depth mechanistic study on the use of ciRGD peptide co-administration. Using a multiparametric approach, it is observed that ciRGD can improve nanoparticle delivery to the tumor itself, but also to tumor cells specifically better than vessel normalization strategies. The effect depends on the level of tumor perfusion, hypoxia, neutrophil levels, and vessel permeability. This work shows that upon characterizing tumors for these parameters, conditions can be selected that can optimally benefit from ciRGD co-administration as a means to improve NP delivery to solid tumors.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neuropilina-1/uso terapêutico , Neutrófilos , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/química , Hipóxia
8.
Sci Adv ; 9(12): eadd5028, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947620

RESUMO

Endothelial cells (ECs) grant access of disseminated cancer cells to distant organs. However, the molecular players regulating the activation of quiescent ECs at the premetastatic niche (PMN) remain elusive. Here, we find that ECs at the PMN coexpress tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its cognate death receptor 5 (DR5). Unexpectedly, endothelial TRAIL interacts intracellularly with DR5 to prevent its signaling and preserve a quiescent vascular phenotype. In absence of endothelial TRAIL, DR5 activation induces EC death and nuclear factor κB/p38-dependent EC stickiness, compromising vascular integrity and promoting myeloid cell infiltration, breast cancer cell adhesion, and metastasis. Consistently, both down-regulation of endothelial TRAIL at the PMN by proangiogenic tumor-secreted factors and the presence of the endogenous TRAIL inhibitors decoy receptor 1 (DcR1) and DcR2 favor metastasis. This study discloses an intracrine mechanism whereby TRAIL blocks DR5 signaling in quiescent endothelia, acting as gatekeeper of the vascular barrier that is corrupted by the tumor during cancer cell dissemination.


Assuntos
Neoplasias da Mama , Células Endoteliais , Humanos , Feminino , Células Endoteliais/metabolismo , Ligantes , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF , Apoptose/genética , Fator de Necrose Tumoral alfa/farmacologia
9.
J Nanobiotechnology ; 21(1): 87, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915084

RESUMO

Nanoparticle-mediated cancer immunotherapy holds great promise, but more efforts are needed to obtain nanoformulations that result in a full scale activation of innate and adaptive immune components that specifically target the tumors. We generated a series of copper-doped TiO2 nanoparticles in order to tune the kinetics and full extent of Cu2+ ion release from the remnant TiO2 nanocrystals. Fine-tuning nanoparticle properties resulted in a formulation of 33% Cu-doped TiO2 which enabled short-lived hyperactivation of dendritic cells and hereby promoted immunotherapy. The nanoparticles result in highly efficient activation of dendritic cells ex vivo, which upon transplantation in tumor bearing mice, exceeded the therapeutic outcomes obtained with classically stimulated dendritic cells. Efficacious but simple nanomaterials that can promote dendritic cancer cell vaccination strategies open up new avenues for improved immunotherapy and human health.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Vacinas , Animais , Camundongos , Humanos , Neoplasias/tratamento farmacológico , Nanopartículas/química , Imunoterapia/métodos , Células Dendríticas , Vacinas Anticâncer/uso terapêutico
10.
EMBO Rep ; 24(3): e56310, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36597777

RESUMO

Macrophages undergo plasma membrane fusion and cell multinucleation to form multinucleated giant cells (MGCs) such as osteoclasts in bone, Langhans giant cells (LGCs) as part of granulomas or foreign-body giant cells (FBGCs) in reaction to exogenous material. How multinucleation per se contributes to functional specialization of mature mononuclear macrophages remains poorly understood in humans. Here, we integrate comparative transcriptomics with functional assays in purified mature mononuclear and multinucleated human osteoclasts, LGCs and FBGCs. Strikingly, in all three types of MGCs, multinucleation causes a pronounced downregulation of macrophage identity. We show enhanced lysosome-mediated intracellular iron homeostasis promoting MGC formation. The transition from mononuclear to multinuclear state is accompanied by cell specialization specific to each polykaryon. Enhanced phagocytic and mitochondrial function associate with FBGCs and osteoclasts, respectively. Moreover, human LGCs preferentially express B7-H3 (CD276) and can form granuloma-like clusters in vitro, suggesting that their multinucleation potentiates T cell activation. These findings demonstrate how cell-cell fusion and multinucleation reset human macrophage identity as part of an advanced maturation step that confers MGC-specific functionality.


Assuntos
Macrófagos , Osteoclastos , Humanos , Macrófagos/metabolismo , Osteoclastos/metabolismo , Osso e Ossos , Células Gigantes , Antígenos B7/metabolismo
11.
J Nanobiotechnology ; 20(1): 518, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494816

RESUMO

Nanoparticle (NP) delivery to solid tumors remains an actively studied field, where several recent studies have shed new insights into the underlying mechanisms and the still overall poor efficacy. In the present study, Au NPs of different sizes were used as model systems to address this topic, where delivery of the systemically administered NPs to the tumor as a whole or to tumor cells specifically was examined in view of a broad range of tumor-associated parameters. Using non-invasive imaging combined with histology, immunohistochemistry, single-cell spatial RNA expression and image-based single cell cytometry revealed a size-dependent complex interaction of multiple parameters that promoted tumor and tumor-cell specific NP delivery. Interestingly, the data show that most NPs are sequestered by tumor-associated macrophages and cancer-associated fibroblasts, while only few NPs reach the actual tumor cells. While perfusion is important, leaky blood vessels were found not to promote NP delivery, but rather that delivery efficacy correlated with the maturity level of tumor-associated blood vessels. In line with recent studies, we found that the presence of specialized endothelial cells, expressing high levels of CD276 and Plvap promoted both tumor delivery and tumor cell-specific delivery of NPs. This study identifies several parameters that can be used to determine the suitability of NP delivery to the tumor region or to tumor cells specifically, and enables personalized approaches for maximal delivery of nanoformulations to the targeted tumor.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Microambiente Tumoral , Tamanho da Partícula , Ouro/metabolismo , Células Endoteliais/metabolismo , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Antígenos B7/metabolismo
12.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233168

RESUMO

The bio-nanohybrid gelatin protein/cadmium sulfide (Gel/CdS) quantum dots (QDs) have been designed via a facile one-pot strategy. The amino acids group of gelatin chelate Cd2+ and grow CdS QDs without any agglomeration. The 1H NMR spectra indicate that during the above process there are no alterations of the gelatin protein structure conformation and chemical functionalities. The prepared Gel/CdS QDs were characterized and their potential as a system for cellular imaging and the electrochemical sensor for hydrogen peroxide (H2O2) detection applications were investigated. The obtained results demonstrate that the developed Gel/CdS QDs system could offer a simple and convenient operating strategy both for the class of contrast agents for cell labeling and electrochemical sensors purposes.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Aminoácidos , Técnicas Biossensoriais/métodos , Cádmio , Compostos de Cádmio , Meios de Contraste , Gelatina , Peróxido de Hidrogênio , Pontos Quânticos/química , Sulfetos/química
13.
J Funct Biomater ; 13(3)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36135572

RESUMO

Nanomedicines have been a major research focus in the past two decades and are increasingly emerging in a broad range of clinical applications. However, a proper understanding of their biodistribution is required to further progress the field of nanomedicine. For this, imaging methods to monitor the delivery and therapeutic efficacy of nanoparticles are urgently needed. At present, optical imaging is the most common method used to study the biodistribution of nanomaterials, where the unique properties of nanomaterials and advances in optical imaging can jointly result in novel methods for optimal monitoring of nanomaterials in preclinical animal models. This review article aims to give an introduction to nanomedicines and their translational impact to highlight the potential of optical imaging to study the biodistribution of nanoparticles and to monitor the delivery and therapeutic efficacy at the preclinical level. After introducing both domains, the review focuses on different techniques that can be used to overcome some intrinsic limitations of optical imaging and how this can specifically benefit nanoparticle studies. Finally, we point out some important key features of nanoparticles that currently hinder their full potential in the clinic and how the advances in optical imaging can help to provide us with the information needed to further boost the clinical translation and expand the field of nanomedicines.

14.
Biomacromolecules ; 23(9): 3572-3581, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35931466

RESUMO

Inspired by the structure of eukaryotic cells, multicompartmental microcapsules have gained increasing attention. However, challenges remain in the fabrication of "all-aqueous" (i.e., oil-free) microcapsules composed of accurately adjustable hierarchical compartments. This study reports on multicompartmental microcapsules with an innovative architecture. While multicompartmental cores of the microcapsules were fabricated through gas shearing, a shell was applied on the cores through surface gelation of alginate. Different from traditional multicompartmental microcapsules, thus obtained microcapsules have well-segregated compartments while the universal nature of the surface-gelation method allows us to finely tune the shell thicknesses of the microcapsules. The microcapsules are highly stable and cytocompatible and allow repeated enzymatic cascade reactions, which might make them of interest for complex biocatalysis or for mimicking physiological processes.


Assuntos
Alginatos , Água , Alginatos/química , Cápsulas/química , Emulsões/química
15.
J Nanobiotechnology ; 20(1): 333, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842697

RESUMO

Red blood cell (RBC) hitchhiking has great potential in enhancing drug therapy, by improving targeting and reducing rapid clearance of nanoparticles (NPs). However, to improve the potential for clinical translation of RBC hitchhiking, a more thorough understanding of the RBC-NP interface is needed. Here, we evaluate the effects of NP surface parameters on the success and biocompatibility of NP adsorption to extracted RBCs from various species. Major differences in RBC characteristics between rabbit, mouse and human were proven to significantly impact NP adsorption outcomes. Additionally, the effects of NP design parameters, including NP hydrophobicity, zeta potential, surfactant concentration and drug encapsulation, on RBC hitchhiking are investigated. Our studies demonstrate the importance of electrostatic interactions in balancing NP adsorption success and biocompatibility. We further investigated the effect of varying the anti-coagulant used for blood storage. The results presented here offer new insights into the parameters that impact NP adsorption on RBCs that will assist researchers in experimental design choices for using RBC hitchhiking as drug delivery strategy.


Assuntos
Nanopartículas , Adsorção , Animais , Sistemas de Liberação de Medicamentos/métodos , Eritrócitos , Humanos , Camundongos , Nanopartículas/uso terapêutico , Polímeros/farmacologia , Coelhos
16.
Chem Soc Rev ; 51(7): 2601-2680, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35234776

RESUMO

Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.


Assuntos
Nanoestruturas , Neurociências , Ouro , Nanoestruturas/uso terapêutico , Nanotecnologia , Engenharia Tecidual
17.
Mol Cancer Res ; 20(4): 527-541, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082164

RESUMO

Molecular drivers of metastasis in patients with high-risk localized prostate cancer are poorly understood. Therefore, we aim to study molecular drivers of metastatic progression in patients with high-risk prostate cancer. A retrospective matched case-control study of two clinico-pathologically identical groups of patients with high-risk prostate cancer was undertaken. One group developed metastatic recurrence (n = 19) while the other did not (n = 25). The primary index tumor was identified by a uro-pathologist, followed by DNA and RNA extraction for somatic copy-number aberration (SCNA) analysis and whole-transcriptome gene expression analysis. In vitro and in vivo studies included cell line manipulation and xenograft models.The integrative CNA and gene expression analyses identified an increase in Antizyme Inhibitor 1 (AZIN1) gene expression within a focal amplification of 8q22.3, which was associated with metastatic recurrence of patients with high-risk prostate cancer in four independent cohorts. The effects of AZIN1 knockdown were evaluated, due to its therapeutic potential. AZIN1 knockdown effected proliferation and metastatic potential of prostate cancer cells and xenograft models. RNA sequencing after AZIN1 knockdown in prostate cancer cells revealed upregulation of genes coding for collagen subunits. The observed effect on cell migration after AZIN1 knockdown was mimicked when exposing prostate cancer cells to bio-active molecules deriving from COL4A1 and COL4A2. Our integrated CNA and gene expression analysis of primary high-risk prostate cancer identified the AZIN1 gene as a novel driver of metastatic progression, by altering collagen subunit expression. Future research should further investigate its therapeutic potential in preventing metastatic recurrence. IMPLICATIONS: AZIN1 was identified as driver of metastatic progression in high-risk prostate cancer through matrikine regulation.


Assuntos
Neoplasias da Próstata , Estudos de Casos e Controles , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Próstata , Neoplasias da Próstata/genética , Estudos Retrospectivos , Transcriptoma
18.
Adv Colloid Interface Sci ; 299: 102568, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34896747

RESUMO

Core-shell microparticles, composed of solid, liquid, or gas bubbles surrounded by a protective shell, are gaining considerable attention as intelligent and versatile carriers that show great potential in biomedical fields. In this review, an overview is given of recent developments in design and applications of biodegradable core-shell systems. Several emerging methodologies including self-assembly, gas-shearing, and coaxial electrospray are discussed and microfluidics technology is emphasized in detail. Furthermore, the characteristics of core-shell microparticles in artificial cells, drug release and cell culture applications are discussed and the superiority of these advanced multi-core microparticles for the generation of artificial cells is highlighted. Finally, the respective developing orientations and limitations inherent to these systems are addressed. It is hoped that this review can inspire researchers to propel the development of this field with new ideas.

19.
Cell Rep ; 35(11): 109253, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133923

RESUMO

Tumor vessel co-option is poorly understood, yet it is a resistance mechanism against anti-angiogenic therapy (AAT). The heterogeneity of co-opted endothelial cells (ECs) and pericytes, co-opting cancer and myeloid cells in tumors growing via vessel co-option, has not been investigated at the single-cell level. Here, we use a murine AAT-resistant lung tumor model, in which VEGF-targeting induces vessel co-option for continued growth. Single-cell RNA sequencing (scRNA-seq) of 31,964 cells reveals, unexpectedly, a largely similar transcriptome of co-opted tumor ECs (TECs) and pericytes as their healthy counterparts. Notably, we identify cell types that might contribute to vessel co-option, i.e., an invasive cancer-cell subtype, possibly assisted by a matrix-remodeling macrophage population, and another M1-like macrophage subtype, possibly involved in keeping or rendering vascular cells quiescent.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/patologia , Análise de Célula Única , Animais , Linhagem Celular Tumoral , Células Endoteliais/patologia , Feminino , Neoplasias Renais/patologia , Neoplasias Pulmonares/secundário , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Células Mieloides/patologia , Pericitos/patologia
20.
ACS Nano ; 15(6): 9782-9795, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34032115

RESUMO

Despite efforts in producing nanoparticles with tightly controlled designs and specific physicochemical properties, these can undergo massive nano-bio interactions and bioprocessing upon internalization into cells. These transformations can generate adverse biological outcomes and premature loss of functional efficacy. Hence, understanding the intracellular fate of nanoparticles is a necessary prerequisite for their introduction in medicine. Among nanomaterials devoted to theranostics is copper sulfide (CuS), which provides outstanding optical properties along with easy synthesis and low cost. Herein, we performed a long-term multiscale study on the bioprocessing of hollow CuS nanoparticles (CuS NPs) and rattle-like iron oxide nanoflowers@CuS core-shell hybrids (IONF@CuS NPs) when inside stem cells and cancer cells, cultured as spheroids. In the spheroids, both CuS NPs and IONF@CuS NPs are rapidly dismantled into smaller units (day 0 to 3), and hair-like nanostructures are generated (day 9 to 21). This bioprocessing triggers an adaptation of the cellular metabolism to the internalized metals without impacting cell viability, differentiation, or oxidative stress response. Throughout the remodeling, a loss of IONF-derived magnetism is observed, but, surprisingly, the CuS photothermal potential is preserved, as demonstrated by a full characterization of the photothermal conversion across the bioprocessing process. The maintained photothermal efficiency correlated well with synchrotron X-ray absorption spectroscopy measurements, evidencing a similar chemical phase for Cu but not for Fe over time. These findings evidence that the intracellular bioprocessing of CuS nanoparticles can reshape them into bioengineered nanostructures without reducing the photothermal function and therapeutic potential.


Assuntos
Nanopartículas , Nanoestruturas , Cobre , Fototerapia , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA