Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Acta Biomater ; 143: 100-114, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35235868

RESUMO

Skin models are used for many applications such as research and development or grafting. Unfortunately, most lack a proper microenvironment producing poor mechanical properties and inaccurate extra-cellular matrix composition and organization. In this report we focused on mechanical properties, extra-cellular matrix organization and cell interactions in human skin samples reconstructed with pure collagen or dermal decellularized extra-cellular matrices (S-dECM) and compared them to native human skin. We found that Full-thickness S-dECM samples presented stiffness two times higher than collagen gel and similar to ex vivo human skin, and proved for the first time that keratinocytes also impact dermal mechanical properties. This was correlated with larger fibers in S-dECM matrices compared to collagen samples and with a differential expression of F-actin, vinculin and tenascin C between S-dECM and collagen samples. This is clear proof of the microenvironment's impact on cell behaviors and mechanical properties. STATEMENT OF SIGNIFICANCE: In vitro skin models have been used for a long time for clinical applications or in vitro knowledge and evaluation studies. However, most lack a proper microenvironment producing a poor combination of mechanical properties and appropriate biological outcomes, partly due to inaccurate extra-cellular matrix (ECM) composition and organization. This can lead to limited predictivity and weakness of skin substitutes after grafting. This study shows, for the first time, the importance of a complex and rich microenvironment on cell behaviors, matrix macro- and micro-organization and mechanical properties. The increased composition and organization complexity of dermal skin decellularized extra-cellular matrix populated with differentiated cells produces in vitro skin models closer to native human skin physiology.


Assuntos
Colágeno , Matriz Extracelular , Diferenciação Celular , Colágeno/química , Matriz Extracelular/metabolismo , Humanos , Queratinócitos , Pele , Alicerces Teciduais/química
2.
Eur J Endocrinol ; 186(5): K9-K15, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35192511

RESUMO

Objective: Endogenous hormones regulate numerous physiological processes in humans. Some of them are routinely measured in blood, saliva and/or urine for the diagnosis of disorders. The analysis of fluids may, however, require multiple samples collected at different time points to avoid the high variability in the concentration of some hormones. In contrast, hair analysis has been proposed as an interesting alternative to reveal average hormone levels over a longer period. In this work, we developed and validated an analytical method for analyzing 36 endogenous steroid and thyroid hormones and one pineal hormone in human hair using ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS). Methods: Sample preparation involved hair decontamination, pulverization, methanol extraction, and purification with C18-solid phase extraction. Extracts were then divided into two portions, respectively injected into an UPLC-MS/MS system, and analyzed using two different instrumental methods. The method was applied to a healthy female population aged 25-45 years. Results: The method was validated on supplemented hair samples for the 37 targeted hormones, and its application to the population under study allowed to detect 32 compounds in 2-100% of the samples. Complete reference intervals (2.5-97.5th percentiles) were established for estrone, 17ß-estradiol, androstenedione, dehydroepiandrosterone, progesterone, 17α-hydroxyprogesterone, cortisone, cortisol and 3,3',5-triiodo-L-thyronine. Hair cortisone, cortisol, tetrahydrocortisone and tetrahydrocortisol concentrations were highly correlated with each other, with Kendall's τ correlation coefficients ranging from 0.52 to 0.68. Conclusion: Allowing the detection of 32 hormones from different chemical classes, the present method will allow to broaden hormonal profiling for better identifying endocrine disorders.


Assuntos
Análise do Cabelo , Espectrometria de Massas em Tandem , Adulto , Cromatografia Líquida , Feminino , Humanos , Hidrocortisona/análise , Pessoa de Meia-Idade , Esteroides/análise , Espectrometria de Massas em Tandem/métodos , Hormônios Tireóideos
4.
Biofabrication ; 13(3)2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33910175

RESUMO

Vascularization of reconstructed tissues is one of the remaining hurdles to be considered to improve both the functionality and viability of skin grafts and the relevance ofin vitroapplications. Our study, therefore, sought to develop a perfusable vascularized full-thickness skin equivalent that comprises a more complex blood vasculature compared to existing models. We combined molding, auto-assembly and microfluidics techniques in order to create a vascularized skin equivalent representing (a) a differentiated epidermis with a physiological organization and correctly expressing K14, K10, Involucrin, TGM1 and Filaggrin, (b) three perfusable vascular channels with angiogenic sprouts stained with VE-Caderin and Collagen IV, (c) an adjacent microvascular network created via vasculogenesis and connected to the sprouting macrovessels. Histological analysis and immunostaining of CD31, Collagen IV, Perlecan and Laminin proved the integrity of vascular constructs. In order to validate the vascularized skin potential of topical and systemic applications, caffeine and minoxidil, two compounds with different chemical properties, were topically applied to measure skin permeability and benzo[a]pyrene pollutant was systemically applied to evaluate systemic delivery. Our results demonstrated that perfusion of skin reconstructs and the presence of a complex vascular plexus resulted in a more predictive and reliable model to assess respectively topical and systemic applications. This model is therefore aimed at furthering drug discovery and improving clinical translation in dermatology.


Assuntos
Pele , Engenharia Tecidual , Microfluídica , Neovascularização Fisiológica , Perfusão
5.
Exp Dermatol ; 30(11): 1693-1698, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33704829

RESUMO

Particulate matter is suspected to be substantially involved in pollution-induced health concerns. In fact, ultrafine particles (UFPs) contain polycyclic aromatic hydrocarbons (PAHs) known as mutagenic, cytotoxic and sometimes phototoxic. Since UFPs reach blood circulation from lung alveoli, deep skin is very likely contaminated by PAHs coming from either skin surface or blood. As photoreactive, benzo(a)pyrene (BaP) or indenopyrene (IcdP) is involved in the interplay between pollution and sunlight. In order to better characterize this process, experiments were carried out on reconstructed human epidermis (RHE) in a protocol mimicking realistic exposure. Concentrations of PAHs comparable to those generally reported in blood were used together with chronic irradiation to low dose UVA1. On a histological level, damaged cells mainly accumulated in a suprabasal situation, thus reducing living epidermis thickness. Stress markers such as IL1-α or MMP3 secretion increased, and surprisingly, the histological position of Transglutaminase-1 within epidermis was disturbed, whereas position of other differentiation markers (keratin-10, filaggrin, loricrin) remained unchanged. When vitamin C was added in culture medium, a very significant protection involving all markers was noticed. In conclusion, we provide here a model of interest to understand the epidermal deleterious consequences of pollution and to select efficient protective compounds.


Assuntos
Ácido Ascórbico/uso terapêutico , Epiderme/efeitos dos fármacos , Epiderme/efeitos da radiação , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Dermatopatias/etiologia , Dermatopatias/prevenção & controle , Raios Ultravioleta/efeitos adversos , Vitaminas/uso terapêutico , Humanos
6.
Sci Rep ; 11(1): 6217, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737638

RESUMO

Organotypic skin tissue models have decades of use for basic research applications, the treatment of burns, and for efficacy/safety evaluation studies. The complex and heterogeneous nature of native human skin however creates difficulties for the construction of physiologically comparable organotypic models. Within the present study, we utilized bioprinting technology for the controlled deposition of separate keratinocyte subpopulations to create a reconstructed epidermis with two distinct halves in a single insert, each comprised of a different keratinocyte sub-population, in order to better model heterogonous skin and reduce inter-sample variability. As an initial proof-of-concept, we created a patterned epidermal skin model using GPF positive and negative keratinocyte subpopulations, both printed into 2 halves of a reconstructed skin insert, demonstrating the feasibility of this approach. We then demonstrated the physiological relevance of this bioprinting technique by generating a heterogeneous model comprised of dual keratinocyte population with either normal or low filaggrin expression. The resultant model exhibited a well-organized epidermal structure with each half possessing the phenotypic characteristics of its constituent cells, indicative of a successful and stable tissue reconstruction. This patterned skin model aims to mimic the edge of lesions as seen in atopic dermatitis or ichthyosis vulgaris, while the use of two populations within a single insert allows for paired statistics in evaluation studies, likely increasing study statistical power and reducing the number of models required per study. This is the first report of human patterned epidermal model using a predefined bioprinted designs, and demonstrates the relevance of bioprinting to faithfully reproduce human skin microanatomy.


Assuntos
Bioimpressão/métodos , Queratinócitos/citologia , Modelos Biológicos , Pele/citologia , Engenharia Tecidual/métodos , Animais , Bioimpressão/instrumentação , Células Alimentadoras/citologia , Células Alimentadoras/fisiologia , Proteínas Filagrinas , Imunofluorescência , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Queratinócitos/fisiologia , Luciferases/genética , Luciferases/metabolismo , Masculino , Camundongos , Células NIH 3T3 , Cultura Primária de Células , Impressão Tridimensional/instrumentação , Proteínas S100/genética , Proteínas S100/metabolismo , Pele/anatomia & histologia , Engenharia Tecidual/instrumentação
7.
Environ Pollut ; 267: 115425, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32882460

RESUMO

Humans are exposed to various anthropogenic chemicals in daily life, including endocrine-disrupting chemicals (EDCs). However, there are limited data on chronic, low-level exposure to such contaminants among the general population. Here hair analysis was used to investigate the occurrence of four polychlorinated biphenyls (PCBs), seven polybrominated diphenyl ethers (PBDEs) and two bisphenols (BPs) in 204 Chinese women living in the urban areas of Baoding and Dalian and 311 pregnant French women. All the PCBs and PBDEs tested here were more frequently detected in the hair samples of the French women than in those of the Chinese women. In both cohorts, PCB 180 and BDE 47 were the dominant PCB and PBDE congener, respectively. PCB 180 was found in 82% of the French women and 44% of the Chinese women, while the corresponding values of BDE 47 were 54% and 11%, respectively. A discriminant analysis further demonstrated the difference in PCBs and PBDEs exposure profile between the two cohorts. These results demonstrate that hair analysis is sufficiently sensitive to detect exposure to these pollutants and highlight differences in exposure between populations even at environmental levels. Although BPA and BPS were found in 100% of the hair samples in both cohorts, the French women had significantly higher levels of BPA and BPS than the Chinese women. The median concentrations of BPA were one order of magnitude higher than BPS in both the Chinese (34.9 versus 2.84 pg/mg) and the French women (118 versus 8.01 pg/mg) respectively. Our results suggest that both French and Chinese populations were extensively exposed to BPA and BPS.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Adulto , China , Poluentes Ambientais/análise , Feminino , França , Éteres Difenil Halogenados/análise , Humanos , Leite Humano/química , Bifenilos Policlorados/análise , Gravidez
8.
Environ Int ; 138: 105633, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32179318

RESUMO

The high use of pesticides worldwide and the constant exposure of humans to these toxic-by-design chemicals have drawn the attention on the possible consequences on human health. However, information on the exposure of the general population to pesticides remain very limited in most countries, especially in urban areas. In the present work, hair analysis was conducted to investigate the exposure of 204 urban women living in two Chinese cities (Baoding and Dalian) to 110 pesticides and 30 metabolites of the following families: organochlorines, organophosphates, carbamates, pyrethroids, neonicotinoids, phenylpyrazoles, acid herbicides, urea herbicides and azoles. Results showed that 71 pesticides and 23 metabolites were found in the hair samples, with concentrations ranging up to 1070 pg/mg in hair. In each hair sample, the number of detected chemicals ranged from 25 to 50, demonstrating the cumulative exposure to pesticides among Chinese women in the studied regions. The concentrations of 38 chemicals (e.g., p-nitrophenol, diethyldithiophosphate, λ-cyhalothrin, permethrin, carbendazim and tebuconazole) were significantly different between women in Baoding and Dalian, indicating the regional differences in exposure to pesticide. Using a multiple regression analysis, we found that concentrations of a few dominant pesticides were associated with age, body mass index (BMI), cooking frequency and regions. These results can provide baseline information on exposure of female adult Chinese population to multiple pesticides and support future studies focused on the health effects associated with pesticide exposure.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Adulto , Cidades , Exposição Ambiental/análise , Monitoramento Ambiental , Feminino , Cabelo/química , Análise do Cabelo , Humanos , Praguicidas/análise
9.
J Dermatol Sci ; 96(2): 114-124, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31628065

RESUMO

BACKGROUND: Skin acts as a protective barrier against direct contact with pollutants but inhalation and systemic exposure have indirect effect on keratinocytes. Exposure to diesel exhaust has been linked to increased oxidative stress. OBJECTIVE: To investigate global proteomic alterations in diesel particulate extract (DPE)/ its vapor exposed skin keratinocytes. METHODS: We employed Tandem Mass Tag (TMT)-based proteomics to study effect of DPE/ DPE vapor on primary skin keratinocytes. RESULTS: We observed an increased expression of oxidative stress response protein NRF2, upon chronic exposure of primary keratinocytes to DPE/ its vapor which includes volatile components such as polycyclic aromatic hydrocarbons (PAHs). Mass spectrometry-based quantitative proteomics led to identification 4490 proteins of which 201 and 374 proteins were significantly dysregulated (≥1.5 fold, p ≤ 0.05) in each condition, respectively. Proteins involved in cellular processes such as cornification (cornifin A), wound healing (antileukoproteinase) and differentiation (suprabasin) were significantly downregulated in primary keratinocytes exposed to DPE/ DPE vapor. These results were corroborated in 3D skin models chronically exposed to DPE/ DPE vapor. Bioinformatics analyses indicate that DPE and its vapor affect distinct molecular processes in skin keratinocytes. Components of mitochondrial oxidative phosphorylation machinery were seen to be exclusively overexpressed upon chronic DPE vapor exposure. In addition, treatment with an antioxidant like vitamin E partially restores expression of proteins altered upon exposure to DPE/ DPE vapor. CONCLUSIONS: Our study highlights distinct adverse effects of chronic exposure to DPE/ DPE vapor on skin keratinocytes and the potential role of vitamin E in alleviating adverse effects of environmental pollution.

10.
Proc Natl Acad Sci U S A ; 116(37): 18410-18415, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451642

RESUMO

Exposure to pollution is a known risk factor for human health. While correlative studies between exposure to pollutants such as polycyclic aromatic hydrocarbons (PAHs) and human health exist, and while in vitro studies help to establish a causative connection, in vivo comparisons of exposed and nonexposed human tissue are scarce. Here, we use human hair as a model matrix to study the correlation of PAH pollution with microstructural changes over time. Two hundred four hair samples from 2 Chinese cities with distinct pollution exposure were collected, and chromatographic-mass spectrometry was used to quantify the PAH-exposure profiles of each individual sample. This allowed us to define a group of less contaminated hair samples as well as a more contaminated group. Using transmission electron microscopy (TEM) together with quantitative image analysis and blind scoring of 82 structural parameters, we find that the speed of naturally occurring hair-cortex degradation and cuticle delamination is increased in fibers with increased PAH concentrations. Treating nondamaged hair fibers with ultraviolet (UV) irradiation leads to a more pronounced cortical damage especially around melanosomes of samples with higher PAH concentrations. Our study shows the detrimental effect of physiological concentrations of PAH together with UV irradiation on the hair microstructure but likely can be applied to other human tissues.


Assuntos
Poluição Ambiental , Cabelo/química , Cabelo/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , China , Exposição Ambiental , Poluentes Ambientais/análise , Cabelo/efeitos da radiação , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Raios Ultravioleta
12.
Environ Int ; 121(Pt 2): 1341-1354, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420128

RESUMO

Polycyclic aromatic hydrocarbons (PAH) are produced from incomplete combustion of organic matter and released as environmental contaminants from activities such as transports, wood combustion, coal-fired power plants. In numerous urban areas worldwide, the levels of PAH exposure are considered critical regarding public health issues. The possibility to detect PAH and PAH metabolites biologically incorporated in human hair was demonstrated and proposed as biomarkers of exposure. Nevertheless, the possibility to distinguish different levels of exposure between different populations is still needed to validate the relevance of hair analysis in epidemiological studies. In this work, hair samples were collected from 204 women from two cities in China based on one year Air Quality Index history from governmental data (Baoding as polluted city and Dalian less polluted city). 8 out of the 15 parent PAH and 7 out of the 56 metabolites analyzed in this study were detected in all the samples. The highest concentrations in hair were observed for phenanthrene (4.2 to 889 pg/mg) > fluoranthene (1.05 to 204 pg/mg) > pyrene (3.2 to 124 pg/mg) for parent PAH, and for 9-OH-fluorene (0.04 to 1.78 pg/mg) > 2-OH-naphthalene (0.68 to 811 pg/mg) > 1-OH-anthracene (0.24 to 10.9 pg/mg) for metabolites. 14 parent PAH and 15 metabolites presented a significantly higher concentration in the hair samples collected from Baoding, as compared to Dalian. The median concentration of parent PAH was from 1.5 to 2.8 times higher in the hair of the subjects from Baoding than in subjects from Dalian and that of PAH metabolites was from 1 to 2.3 times higher. The study of inter-chemical associations revealed similarities and differences between the two areas, suggesting common and different sources of exposure depending on PAH respectively. The results confirmed the relevance of hair analysis to identify qualitative and quantitative differences in PAH exposure between populations from different areas. This study is the first one to investigate both parent PAH and their metabolites in a biological matrix.


Assuntos
Exposição Ambiental , Poluentes Ambientais/análise , Cabelo/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Adulto , China , Monitoramento Ambiental , Feminino , Humanos , População Urbana/estatística & dados numéricos
13.
J Dermatol Sci ; 91(3): 239-249, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29857962

RESUMO

BACKGROUND: Skin acts as a protective barrier against direct contact with pollutants but inhalation and systemic exposure have indirect effect on keratinocytes. Exposure to diesel exhaust has been linked to increased oxidative stress. OBJECTIVE: To investigate global proteomic alterations in diesel particulate extract (DPE)/its vapor exposed skin keratinocytes. METHODS: We employed Tandem Mass Tag (TMT)-based proteomics to study effect of DPE/DPE vapor on primary skin keratinocytes. RESULTS: We observed an increased expression of oxidative stress response protein NRF2, upon chronic exposure of primary keratinocytes to DPE/its vapor which includes volatile components such as polycyclic aromatic hydrocarbons (PAHs). Mass spectrometry-based quantitative proteomics led to identification 4490 proteins of which 201 and 374 proteins were significantly dysregulated (≥1.5 fold, p≤0.05) in each condition, respectively. Proteins involved in cellular processes such as cornification (cornifin A), wound healing (antileukoproteinase) and differentiation (suprabasin) were significantly downregulated in primary keratinocytes exposed to DPE/DPE vapor. These results were corroborated in 3D skin models chronically exposed to DPE/DPE vapor. Bioinformatics analyses indicate that DPE and its vapor affect distinct molecular processes in skin keratinocytes. Components of mitochondrial oxidative phosphorylation machinery were seen to be exclusively overexpressed upon chronic DPE vapor exposure. In addition, treatment with an antioxidant like vitamin E partially restores expression of proteins altered upon exposure to DPE/DPE vapor. CONCLUSIONS: Our study highlights distinct adverse effects of chronic exposure to DPE/DPE vapor on skin keratinocytes and the potential role of vitamin E in alleviating adverse effects of environmental pollution.


Assuntos
Queratinócitos/efeitos dos fármacos , Material Particulado/toxicidade , Proteoma/efeitos dos fármacos , Pele/efeitos dos fármacos , Emissões de Veículos/toxicidade , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Queratinócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Espectrometria de Massas em Tandem , Fatores de Tempo , Vitamina E/farmacologia
14.
J Dermatol Sci ; 86(2): 162-169, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28153538

RESUMO

BACKGROUND: It is likely that skin is exposed to low concentrations of pollutants such as Polycyclic Aromatic Hydrocarbons (PAH) either through topical penetration by ultrafine particles or by systemic distribution. No precise estimation of pollutants in living skin is available, but literature has reported contamination of blood by PAH at concentrations in the nanomolar range. Some pollutants (PAH for example) are photo-reactive and phototoxic: sunlight and pollution might thus synergistically compromise skin health. OBJECTIVE: Here, the biological effects of particulate matter, PM extract and various PAH were compared in normal human epidermal keratinocytes (NHEK) and reconstructed skin model exposed to either daily UV (d-UV 300-400nm) or UVA1 (350-400nm). Impact of pollutants (PM, PAH or PM extract) combined to UV was studied on NHEK by measuring toxicity, redox homeostasis and GSH metabolism in NHEK. METHODS: NHEK were exposed to UV from solar simulator (either d-UV or UVA1) combined with pollutants. Viability, clonogenic efficiency, redox homeostasis and GSH metabolism were assessed. RESULTS: Pollutants (PAH, PM or PM extract) ±UVA1 irradiation was associated with a significant phototoxic effect that was equal to or greater than that produced by d-UV. This result is interesting considering that UVA1 represents around 80% of daily UV and reaches the dermal-epidermal junction with ease. Moreover, among PAH studied, benzo[a]pyrene and indeno[1,2,3-cd]pyrene were phototoxic at very low concentrations (nanomolar range) on cultured cells or in reconstructed epidermis and also impaired keratinocyte clonogenic potential at sub-toxic doses. ROS generation within cells and in the inner mitochondrial compartment, mitochondrial membrane depolarization and/or reduced ATP production were also noted. Meanwhile, intracellular glutathione concentrations transiently decreased several hours post-treatment and reduction of its synthesis by buthionine sulfoximine potentiated PAH phototoxicity. Consequently, expression of GSH neo-synthesis genes such as SLC7A11 or GCLc was upregulated several hours post-treatment. CONCLUSION: These results obtained using PAH concentrations in the range of those reported in blood of pollution-exposed people suggest that exposure to such a photo-pollution stress, particularly if chronic, may impair cutaneous homeostasis and aggravate sunlight-induced skin damage.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Linhagem Celular , Sobrevivência Celular , Epiderme/metabolismo , Fibroblastos/metabolismo , Glutationa/metabolismo , Homeostase , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Luz , Potencial da Membrana Mitocondrial , Oxirredução , Fotoquímica , Pirenos/toxicidade , Pele/metabolismo , Luz Solar
15.
OMICS ; 20(11): 615-626, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27828771

RESUMO

Cigarette smoking has been associated with multiple negative effects on human skin. Long-term physiological effects of cigarette smoke are through chronic and not acute exposure. Molecular alterations due to chronic exposure to cigarette smoke remain unclear. Primary human skin keratinocytes chronically exposed to cigarette smoke condensate (CSC) showed a decreased wound-healing capacity with an increased expression of NRF2 and MMP9. Using quantitative proteomics, we identified 4728 proteins, of which 105 proteins were overexpressed (≥2-fold) and 41 proteins were downregulated (≤2-fold) in primary skin keratinocytes chronically exposed to CSC. We observed an alteration in the expression of several proteins involved in maintenance of epithelial barrier integrity, including keratin 80 (5.3 fold, p value 2.5 × 10-7), cystatin A (3.6-fold, p value 3.2 × 10-3), and periplakin (2.4-fold, p value 1.2 × 10-8). Increased expression of proteins associated with skin hydration, including caspase 14 (2.2-fold, p value 4.7 × 10-2) and filaggrin (3.6-fold, p value 5.4 × 10-7), was also observed. In addition, we report differential expression of several proteins, including adipogenesis regulatory factor (2.5-fold, p value 1.3 × 10-3) and histone H1.0 (2.5-fold, p value 6.3 × 10-3) that have not been reported earlier. Bioinformatics analyses demonstrated that proteins differentially expressed in response to CSC are largely related to oxidative stress, maintenance of skin integrity, and anti-inflammatory responses. Importantly, treatment with vitamin E, a widely used antioxidant, could partially rescue adverse effects of CSC exposure in primary skin keratinocytes. The utility of antioxidant-based new dermatological formulations in delaying or preventing skin aging and oxidative damages caused by chronic cigarette smoke exposure warrants further clinical investigations and multi-omics research.


Assuntos
Queratinócitos/metabolismo , Nicotiana/efeitos adversos , Proteínas/metabolismo , Pele/metabolismo , Fumaça/efeitos adversos , Fumar/efeitos adversos , Linhagem Celular , Células Cultivadas , Proteínas Filagrinas , Expressão Gênica , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteômica , Reepitelização/efeitos dos fármacos , Pele/citologia , Vitamina E/farmacologia , Vitamina E/uso terapêutico
16.
Blood ; 117(6): 1917-27, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21139082

RESUMO

Chronic lymphocytic leukemia (CLL) is characterized by a clonal accumulation of mature neoplastic B cells that are resistant to apoptosis. Aiolos, a member of the Ikaros family of zinc-finger transcription factors, plays an important role in the control of mature B lymphocyte differentiation and maturation. In this study, we showed that Aiolos expression is up-regulated in B-CLL cells. This overexpression does not implicate isoform imbalance or disturb Aiolos subcellular localization. The chromatin status at the Aiolos promoter in CLL is defined by the demethylation of DNA and an enrichment of euchromatin associated histone markers, such as the dimethylation of the lysine 4 on histone H3. These epigenetic modifications should allow its upstream effectors, such as nuclear factor-κB, constitutively activated in CLL, to gain access to promoter, resulting up-regulation of Aiolos. To determine the consequences of Aiolos deregulation in CLL, we analyzed the effects of Aiolos overexpression or down-regulation on apoptosis. Aiolos is involved in cell survival by regulating the expression of some Bcl-2 family members. Our results strongly suggest that Aiolos deregulation by epigenetic modifications may be a hallmark of CLL.


Assuntos
Epigênese Genética , Fator de Transcrição Ikaros/genética , Leucemia Linfocítica Crônica de Células B/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Apoptose/fisiologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Sequência de Bases , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Cromatina/genética , Cromatina/metabolismo , Ilhas de CpG , Metilação de DNA , Primers do DNA/genética , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fator de Transcrição Ikaros/antagonistas & inibidores , Fator de Transcrição Ikaros/metabolismo , Técnicas In Vitro , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/genética , Frações Subcelulares/metabolismo
17.
PLoS Genet ; 5(6): e1000524, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19543365

RESUMO

Peroxiredoxins (Prxs) constitute a family of thiol-specific peroxidases that utilize cysteine (Cys) as the primary site of oxidation during the reduction of peroxides. To gain more insight into the physiological role of the five Prxs in budding yeast Saccharomyces cerevisiae, we performed a comparative study and found that Tsa1 was distinguished from the other Prxs in that by itself it played a key role in maintaining genome stability and in sustaining aerobic viability of rad51 mutants that are deficient in recombinational repair. Tsa2 and Dot5 played minor but distinct roles in suppressing the accumulation of mutations in cooperation with Tsa1. Tsa2 was capable of largely complementing the absence of Tsa1 when expressed under the control of the Tsa1 promoter. The presence of peroxidatic cysteine (Cys(47)) was essential for Tsa1 activity, while Tsa1(C170S) lacking the resolving Cys was partially functional. In the absence of Tsa1 activity (tsa1 or tsa1(CCS) lacking the peroxidatic and resolving Cys) and recombinational repair (rad51), dying cells displayed irregular cell size/shape, abnormal cell cycle progression, and significant increase of phosphatidylserine externalization, an early marker of apoptosis-like cell death. The tsa1(CCS) rad51- or tsa1 rad51-induced cell death did not depend on the caspase Yca1 and Ste20 kinase, while the absence of the checkpoint protein Rad9 accelerated the cell death processes. These results indicate that the peroxiredoxin Tsa1, in cooperation with appropriate DNA repair and checkpoint mechanisms, acts to protect S. cerevisiae cells against toxic levels of DNA damage that occur during aerobic growth.


Assuntos
Regulação para Baixo , Instabilidade Genômica , Peroxidases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Reparo do DNA , Peroxidases/genética , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA