Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Life (Basel) ; 14(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38541630

RESUMO

Melanoma is a skin cancer caused by the malignant transformation of melanocytes and cutaneous melanoma represents the most aggressive and deadliest type of skin cancer with an increasing incidence worldwide. The main purpose of the present research was to evaluate the anticancer effects of the natural bioactive compounds xanthomicrol (XAN) and eupatilin (EUP) in human A375 malignant skin melanoma cells, a cell line widely used as an in vitro model of cutaneous melanoma. XAN and EUP are lipophilic methoxylated flavones with antioxidant, anti-inflammatory, and antitumor properties. The effects of XAN and EUP on cell viability, morphology, lipid profile, oxidative status, apoptosis, and mitochondrial membrane polarization were determined and compared in A375 cells. At 24 h-incubation (MTT assay), XAN significantly reduced viability at the dose range of 2.5-200 µM, while EUP showed a significant cytotoxicity from 25 µM. Moreover, both methoxylated flavones induced (at 10 and 25 µM, 24 h-incubation) marked cell morphological alterations (presence of rounded and multi-nucleated cells), signs of apoptosis (NucView 488 assay), and a noteworthy mitochondrial membrane depolarization (MitoView 633 assay), coupled to a marked lipid profile modulation, including variations in the ratio of phospholipid/cholesterol and a decrease in the oleic, palmitic, and palmitoleic acid amounts. Moreover, a remarkable time-dependent ROS generation (2',7'-dichlorodihydrofluorescein diacetate assay) was observed during 3 h-incubation of A375 cancer cells in the presence of XAN and EUP (10 and 25 µM). Our results confirm the potential antitumor effect of natural EUP and XAN in cutaneous melanoma by the activation of multiple anticancer mechanisms.

2.
J Appl Toxicol ; 44(5): 720-732, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38152000

RESUMO

Skin oxidative stress results in structural damage, leading to premature senescence, and pathological conditions such as inflammation and cancer. The plant-derived prenylated pyrone-phloroglucinol heterodimer arzanol, isolated from Helichrysum italicum ssp. microphyllum (Willd.) Nyman aerial parts, exhibits anti-inflammatory, anticancer, antimicrobial, and antioxidant activities. This study explored the arzanol protection against hydrogen peroxide (H2O2) induced oxidative damage in HaCaT human keratinocytes in terms of its ability to counteract cytotoxicity, reactive oxygen species (ROS) generation, apoptosis, and mitochondrial membrane depolarization. Arzanol safety on HaCaT cells was preliminarily examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and microscopic observation. The arzanol pre-incubation (5-100 µM, for 24 h) did not induce cytotoxicity and morphological alterations. The phloroglucinol, at 50 µM, significantly protected keratinocytes against cytotoxicity induced by 2 h-incubation with 2.5 and 5 mM H2O2, decreased cell ROS production induced by 1 h-exposure to all tested H2O2 concentrations (0.5-5 mM), as determined by the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay, and lipid peroxidation (thiobarbituric acid reactive substances [TBARS] method). The 2-h incubation of keratinocytes with H2O2 determined a significant increase of apoptotic cells versus control cells, evaluated by NucView® 488 assay, from the dose of 2.5 mM. Moreover, an evident mitochondrial membrane potential depolarization, monitored by fluorescent mitochondrial dye MitoView™ 633, was assessed at 5 mM H2O2. Arzanol pre-treatment (50 µM) exerted a strong significant protective effect against apoptosis, preserving the mitochondrial membrane potential of HaCaT cells at the highest H2O2 concentrations. Our results validate arzanol as an antioxidant agent for the prevention/treatment of skin oxidative-related disorders, qualifying its potential use for cosmeceutical and pharmaceutical applications.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Floroglucinol/análogos & derivados , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/toxicidade , Pironas/química , Pironas/farmacologia , Estresse Oxidativo , Queratinócitos , Floroglucinol/farmacologia , Floroglucinol/química , Apoptose
3.
ChemMedChem ; 18(21): e202300400, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37801332

RESUMO

Coumarin scaffold has proven to be promising in the development of bioactive agents, such as xanthine oxidase (XO) inhibitors. Novel hydroxylated 3-arylcoumarins were designed, synthesized, and evaluated for their XO inhibition and antioxidant properties. 3-(3'-Bromophenyl)-5,7-dihydroxycoumarin (compound 11) proved to be the most potent XO inhibitor, with an IC50 of 91 nM, being 162 times better than allopurinol, one of the reference controls. Kinetic analysis of compound 11 and compound 5 [3-(4'-bromothien-2'-yl)-5,7-dihydroxycoumarin], the second-best compound within the series (IC50 of 280 nM), has been performed, and both compounds showed a mixed-type inhibition. Both compounds present good antioxidant activity (ability to scavenge ABTS radical) and are able to reduce reactive oxygen species (ROS) levels in H2 O2 -treated cells. In addition, they proved to be non-cytotoxic in a Caco-2 cells viability assay. Molecular docking studies have been carried out to correlate the compounds' theoretical and experimental binding affinity to the XO binding pocket.


Assuntos
Inibidores Enzimáticos , Xantina Oxidase , Humanos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Células CACO-2 , Cinética , Inibidores Enzimáticos/química , Antioxidantes/química
4.
Antioxidants (Basel) ; 12(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37371968

RESUMO

This study investigated chemical composition, cytotoxicity in normal and cancer cells, and antimicrobial and antioxidant activity of the essential oil (EO) isolated by hydrodistillation from the discarded leaves of lemon (Citrus limon) plants cultivated in Sardinia (Italy). The volatile chemical composition of lemon leaf EO (LLEO) was analyzed with gas chromatography-mass spectrometry combined with flame ionization detection (GC/MS and GC/FID). The most abundant component of LLEO was limonene (260.7 mg/mL), followed by geranial (102.6 mg/mL) and neral (88.3 mg/mL). The antimicrobial activity of LLEO was tested using eight bacterial strains and two types of yeasts by a microdilution broth test. Candida albicans showed the greatest susceptibility (MIC = 0.625 µL/mL) and Listeria monocytogenes and Staphylococcus aureus were inhibited at low LLEO concentration (MIC values from 2.5 to 5 µL/mL). The C. limon leaf EO displayed radical scavenging ability (IC50 value of 10.24 mg/mL) in the 2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) assay. Furthermore, the LLEO impact on cell viability was explored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in cancer HeLa cells, A375 melanoma cell line, normal fibroblasts (3T3 cells), and keratinocytes (HaCaT cells). LLEO, at 24 h of incubation, significantly reduced viability from 25 µM in Hela cells (33% reduction) and A375 cells (27%), greatly affecting cell morphology, whereas this effect was found from 50 µM on 3T3 fibroblasts and keratinocytes. LLEO's pro-oxidant effect was also established in HeLa cells by 2',7'-dichlorodihydrofluorescein diacetate assay.

5.
CNS Neurosci Ther ; 29(7): 1750-1761, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36942502

RESUMO

INTRODUCTION: Increased glutamate levels and electrolytic fluctuations have been observed in acutely manic patients. Despite some efficacy of the non-competitive NMDA receptor antagonist memantine (Mem), such as antidepressant-like and mood-stabilizer drugs in clinical studies, its specific mechanisms of action are still uncertain. The present study aims to better characterize the Drosophila melanogaster fly Shaker mutants (SH), as a translational model of manic episodes within bipolar disorder in humans, and to investigate the potential anti-manic properties of Mem. METHODS AND RESULTS: Our findings showed typical behavioral abnormalities in SH, which mirrored with the overexpression of NMDAR-NR1 protein subunit, matched well to glutamate up-regulation. Such molecular features were associated to a significant reduction of SH brain volume in comparison to Wild Type strain flies (WT). Here we report on the ability of Mem treatment to ameliorate behavioral aberrations of SH (similar to that of Lithium), and its ability to reduce NMDAR-NR1 over-expression. CONCLUSIONS: Our results show the involvement of the glutamatergic system in the SH, given the interaction between the Shaker channel and the NMDA receptor, suggesting this model as a promising tool for studying the neurobiology of bipolar disorders. Moreover, our results show Mem as a potential disease-modifying therapy, providing insight on new mechanisms of action.


Assuntos
Mania , Memantina , Animais , Humanos , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ácido Glutâmico/metabolismo , Fenótipo
6.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202634

RESUMO

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4'-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Neurônios/efeitos dos fármacos , Psicotrópicos/efeitos adversos , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Psicotrópicos/química , Psicotrópicos/toxicidade , Relação Estrutura-Atividade
7.
Neuropharmacology ; 189: 108537, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798546

RESUMO

Allosteric modulators of G protein coupled receptors (GPCRs), including GABABRs (GABABRs), are promising therapeutic candidates. While several positive allosteric modulators (PAM) of GABABRs have been characterized, only recently the first negative allosteric modulator (NAM) has been described. In the present study, we report the characterization of COR758, which acts as GABABR NAM in rat cortical membranes and CHO cells stably expressing GABABRs (CHO-GABAB). COR758 failed to displace the antagonist [3H]CGP54626 from the orthosteric binding site of GABABRs showing that it acts through an allosteric binding site. Docking studies revealed a possible new allosteric binding site for COR758 in the intrahelical pocket of the GABAB1 monomer. COR758 inhibited basal and GABABR-stimulated O-(3-[35Sthio)-triphosphate ([35S]GTPγS) binding in brain membranes and blocked the enhancement of GABABR-stimulated [35S]GTPγS binding by the PAM GS39783. Bioluminescent resonance energy transfer (BRET) measurements in CHO-GABAB cells showed that COR758 inhibited G protein activation by GABA and altered GABABR subunit rearrangements. Additionally, the compound altered GABABR-mediated signaling such as baclofen-induced inhibition of cAMP production in transfected HEK293 cells, agonist-induced Ca2+ mobilization as well as baclofen and the ago-PAM CGP7930 induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in CHO-GABAB cells. COR758 also prevented baclofen-induced outward currents recorded from rat dopamine neurons, substantiating its property as a NAM for GABABRs. Altogether, these data indicate that COR758 inhibits G protein signaling by GABABRs, likely by interacting with an allosteric binding-site. Therefore, COR758 might serve as a scaffold to develop additional NAMs for therapeutic intervention.


Assuntos
Moduladores GABAérgicos/química , Moduladores GABAérgicos/farmacologia , Antagonistas de Receptores de GABA-B/química , Antagonistas de Receptores de GABA-B/farmacologia , Receptores de GABA-B/fisiologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Agonistas dos Receptores de GABA-B/química , Agonistas dos Receptores de GABA-B/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/farmacologia
8.
Plants (Basel) ; 10(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466576

RESUMO

The aim of this study was to test the inhibitory effect of fruit extracts from Washingtonia filifera on skin aging-related enzymes. The pulp extracts did not exert a significant enzyme inhibition while seed extracts from W. filifera exhibit anti-elastase, anti-collagenase, and anti-tyrosinase activities. Tyrosinase was mildly inhibited while a stronger effect was observed with respect to elastase and collagenase inhibition. Alcoholic extracts provided better results than aqueous extracts. Among them, methanol extracts showed the prominent enzyme inhibitory activities being IC50 value for elastase and collagenase comparable and even better than the reference compound. The inhibition mode of the most active extracts was investigated by Lineweaver-Burk plot analysis. Seed extracts from W. filifera were also investigated for their photo-protective effect by Mansur equation and the antioxidant activity of W. filifera extract was evaluated in oxidative-stressed cells. To evaluate the safety of the extract, the effect on cell viability of human keratinocytes cells was analyzed. Methanol extract presented the best photo-protective effect and exerted an antioxidant activity in a cellular system with no cytotoxic effect. The overall results demonstrate that W. filifera extracts are promising sources of bioactive compounds that could be used in cosmetic and pharmaceutical preparation.

9.
Int J Biol Macromol ; 169: 428-435, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347933

RESUMO

In this study, we have investigated a series of hydroxylated 2-phenylbenzofurans compounds for their inhibitory activity against α-amylase and α-glucosidase activity. Inhibitors of carbohydrate degrading enzymes seem to have an important role as antidiabetic drugs. Diabetes mellitus is a wide-spread metabolic disease characterized by elevated levels of blood glucose. The most common is type 2 diabetes, which can lead to severe complications. Since the aggregates of islet amyloid polypeptide (IAPP) are common in diabetic patients, the effect of compounds to inhibit amyloid fibril formation was also determined. All the compounds assayed showed to be more active against α-glucosidase. Compound 16 showed the lowest IC50 value of the series, and it is found to be 167 times more active than acarbose, the reference compound. The enzymatic activity assays showed that compound 16 acts as a mixed-type inhibitor of α-glucosidase. Furthermore, compound 16 displayed effective inhibition of IAPP aggregation and it manifested no significant cytotoxicity. To predict the binding of compound 16 to IAPP and α-glucosidase protein complexes, molecular docking studies were performed. Altogether, our results support that the 2-phenylbenzofuran derivatives could represent a promising candidate for developing molecules able to modulate multiple targets involved in diabetes mellitus disorder.


Assuntos
Benzofuranos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Amilases/antagonistas & inibidores , Amiloide/química , Benzofuranos/química , Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Humanos , Hidroxilação , Hipoglicemiantes/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Simulação de Acoplamento Molecular , Estudos Prospectivos , alfa-Amilases/química , alfa-Glucosidases/metabolismo
10.
Neuropsychopharmacology ; 45(13): 2229-2238, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919410

RESUMO

Individuals with severe psychiatric disorders have a reduced life expectancy compared to the general population. At the biological level, patients with these disorders present features that suggest the involvement of accelerated aging, such as increased circulating inflammatory markers and shorter telomere length (TL). To date, the role of the interplay between inflammation and telomere dynamics in the pathophysiology of severe psychiatric disorders has been scarcely investigated. In this study we measured T-lymphocytes TL with quantitative fluorescent in situ hybridization (Q-FISH) and plasma levels of inflammatory markers in a cohort comprised of 40 patients with bipolar disorder (BD), 41 with schizophrenia (SZ), 37 with major depressive disorder (MDD), and 36 non-psychiatric controls (NPC). TL was shorter in SZ and in MDD compared to NPC, while it was longer in BD (model F6, 137 = 20.128, p = 8.73 × 10-17, effect of diagnosis, F3 = 31.870; p = 1.08 × 10-15). There was no effect of the different classes of psychotropic medications, while duration of treatment with mood stabilizers was associated with longer TL (Partial correlation controlled for age and BMI: correlation coefficient = 0.451; p = 0.001). Levels of high-sensitivity C-Reactive Protein (hsCRP) were higher in SZ compared to NPC (adjusted p = 0.027), and inversely correlated with TL in the whole sample (r = -0.180; p = 0.042). Compared to NPC, patients with treatment resistant (TR) SZ had shorter TL (p = 0.001), while patients with TR MDD had higher levels of tumor necrosis factor-α (TNFα) compared to NPC (p = 0.028) and to non-TR (p = 0.039). Comorbidity with cardio-metabolic disorders did not influence the observed differences in TL, hsCRP, and TNFα among the diagnostic groups. Our study suggests that patients with severe psychiatric disorders present reduced TL and increased inflammation.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Transtorno Bipolar/tratamento farmacológico , Estudos de Casos e Controles , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Hibridização in Situ Fluorescente , Telômero
11.
Pharmacogenomics ; 21(8): 533-540, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32372689

RESUMO

Aim: To assess the role of lithium treatment in the relationship between bipolar disorder (BD) and leukocyte telomere length (LTL). Materials & methods: We compared LTL between 131 patients with BD, with or without a history of lithium treatment, and 336 controls. We tested the association between genetically determined LTL and BD in two large genome-wide association datasets. Results: Patients with BD with a history lithium treatment showed longer LTL compared with never-treated patients (p = 0.015), and similar LTL compared with controls. Patients never treated with lithium showed shorter LTL compared with controls (p = 0.029). Mendelian randomization analysis showed no association between BD and genetically determined LTL. Conclusion: Our data support previous findings showing that long-term lithium treatment might protect against telomere shortening.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Estudo de Associação Genômica Ampla/métodos , Compostos de Lítio/uso terapêutico , Encurtamento do Telômero/efeitos dos fármacos , Adulto , Antidepressivos/farmacologia , Transtorno Bipolar/diagnóstico , Feminino , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/fisiologia , Compostos de Lítio/farmacologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Telômero/efeitos dos fármacos , Telômero/fisiologia , Encurtamento do Telômero/fisiologia , Resultado do Tratamento
12.
BMJ Open ; 10(1): e032513, 2020 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-31988227

RESUMO

INTRODUCTION: Severe psychiatric disorders are typically associated with a significant reduction in life expectancy compared with the general population. Among the different hypotheses formulated to explain this observation, accelerated ageing has been increasingly recognised as the main culprit. At the same time, telomere shortening is becoming widely accepted as a proxy molecular marker of ageing. The present study aims to fill a gap in the literature by better defining the complex interaction/s between inflammation, age-related comorbidities, telomere shortening and gut microbiota in psychiatric disorders. METHODS AND ANALYSIS: A cross-sectional study is proposed, recruiting 40 patients for each of three different diagnostic categories (bipolar disorder, schizophrenia and major depressive disorder) treated at the Section of Psychiatry and at the Unit of Clinical Pharmacology of the University Hospital Agency of Cagliari (Italy), compared with 40 age-matched and sex-matched non-psychiatric controls. Each group includes individuals suffering, or not, from age-related comorbidities, to account for the impact of these medical conditions on the biological make-up of recruited patients. The inflammatory state, microbiota composition and telomere length (TL) are assessed. ETHICS AND DISSEMINATION: The study protocol was approved by the Ethics Committee of the University Hospital Agency of Cagliari (PG/2018/11693, 5 September 2018). The study is conducted in accordance with the principles of good clinical practice and the Declaration of Helsinki, and in compliance with the relevant Italian national legislation. Written, informed consent is obtained from all participants. Participation in the study is on a voluntary basis only. Patients will be part of the dissemination phase of the study results, during which a local conference will be organised and families of patients will also be involved. Moreover, findings will be published in one or more research papers and presented at national and international conferences, in posters or oral communications.


Assuntos
Senilidade Prematura/etiologia , Envelhecimento/fisiologia , Microbioma Gastrointestinal , Inflamação/complicações , Transtornos Mentais/complicações , Encurtamento do Telômero , Telômero , Adolescente , Adulto , Idoso , Transtorno Bipolar/complicações , Estudos de Casos e Controles , Comorbidade , Estudos Transversais , Transtorno Depressivo Maior/complicações , Feminino , Humanos , Itália , Expectativa de Vida , Masculino , Pessoa de Meia-Idade , Projetos de Pesquisa , Esquizofrenia/complicações , Adulto Jovem
13.
Front Pharmacol ; 11: 587140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505308

RESUMO

Fatty acids play a crucial role in the brain as specific receptor ligands and as precursors of bioactive metabolites. Conjugated linoleic acid (CLA), a group of positional and geometric isomers of linoleic acid (LA, 18:2 n-6) present in meat and dairy products of ruminants and synthesized endogenously in non-ruminants and humans, has been shown to possess different nutritional properties associated with health benefits. Its ability to bind to peroxisome proliferator-activated receptor (PPAR) α, a nuclear receptor key regulator of fatty acid metabolism and inflammatory responses, partly mediates these beneficial effects. CLA is incorporated and metabolized into brain tissue where induces the biosynthesis of endogenous PPARα ligands palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), likely through a positive feedback mechanism where PPARα activation sustains its own cellular effects through ligand biosynthesis. In addition to PPARα, PEA and OEA may as well bind to other receptors such as TRPV1, further extending CLA own anti-neuroinflammatory actions. Future studies are needed to investigate whether dietary CLA may exert anti-inflammatory activity, particularly in the setting of neurodegenerative diseases and neuropsychiatric disorders with a neuroinflammatory basis.

14.
Nutr Neurosci ; 22(3): 207-214, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28847225

RESUMO

OBJECTIVES: Conjugated linoleic acid (CLA) isomers have been shown to possess anti-inflammatory activity in the central nervous system. In this study, we aimed to evaluate whether modulation of the fatty acid profile by the CLA isomers c9,t11 or t10,c12CLA was associated with changes in the expression of pro-inflammatory molecules in human astrocytes. METHODS: Cultured astrocytes were treated for 6 days with 100 µM fatty acids (c9,t11CLA or t10,c12CLA or oleic acid). Following the treatment, the fatty acid profile of the cell and pro-inflammatory molecule expression were assessed. RESULTS: Only the t10,c12CLA isomer induced a significant decrease in arachidonic acid and increased the ratio of docosahexaenoic acid/eicosapentaenoic acid, which constitutes indirect evidence of peroxisome proliferator-activated receptor alpha activation. Inhibition of tumour necrosis factor-α, interleukin-1ß, and RANTES expression was observed in astrocytes treated with c9,t11CLA and t10,c12CLA. DISCUSSION: Current data demonstrate that CLA isomers, particularly t10,c12, may affect neuroinflammation by reducing the pro-inflammatory molecules in cultured astrocytes, suggesting a potential nutritional role of CLA isomers in modulating the astrocyte inflammatory response.


Assuntos
Anti-Inflamatórios/administração & dosagem , Astrócitos/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Ácidos Linoleicos Conjugados/administração & dosagem , Biomarcadores/metabolismo , Células Cultivadas , Regulação para Baixo , Ácidos Graxos/administração & dosagem , Ácidos Graxos/metabolismo , Humanos , RNA Mensageiro/metabolismo
15.
Int J Biol Macromol ; 120(Pt A): 1286-1293, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30189275

RESUMO

Xanthine oxidase (XO) is an interesting target for the synergic treatment of several diseases. Coumarin scaffold plays an important role in the design of efficient and potent inhibitors. In the current work, twenty 3-arylcoumarins and eight 3-heteroarylcoumarins were evaluated for their ability to inhibit XO. Among all the candidates, 5,7-dihydroxy-3-(3'-hydroxyphenyl)coumarin (compound 20) proved to be the best inhibitor with an IC50 of 2.13 µM, being 7-fold better than the reference compound, allopurinol (IC50 = 14.75 µM). To deeply understand the potential of this compound, the inhibition mode was also evaluated. Compound 20 showed an uncompetitive profile of inhibition. Molecular docking studies were carried out to analyze the interaction of compound 20 with the studied enzyme. The binding mode involving residues different from the catalytic site of the binding pocket, is compatible to the observed uncompetitive inhibition. Compound 20 was not cytotoxic at its IC50 value, as demonstrated by the viability of 99.1% in 3 T3 cells. Furthermore, pharmacokinetics and physicochemical properties were also calculated, which corroborated with the potential of the studied compounds as promising XO inhibitors.


Assuntos
Cumarínicos/química , Inibidores Enzimáticos/química , Xantina Oxidase/antagonistas & inibidores , Alopurinol/química , Domínio Catalítico , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
16.
Colloids Surf B Biointerfaces ; 168: 50-59, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29456044

RESUMO

Mesoporous silica nanoparticles (MSNs) were functionalized with amino groups (MSN-NH2) and then with hyaluronic acid, a biocompatible biopolymer which can be recognized by CD44 receptors in tumor cells, to obtain a targeting drug delivery system. To this purpose, three hyaluronic acid samples differing for the molecular weight, namely HAS (8-15 kDa), HAM (30-50 kDa) and HAL (90-130 kDa), were used. The MSN-HAS, MSN-HAM, and MSN-HAL materials were characterized through zeta potential and dynamic light scattering measurements at pH = 7.4 and T = 37 °C to simulate physiological conditions. While zeta potential showed an increasing negative value with the increase of the HA chain length, an anomalous value of the hydrodynamic diameter was observed for MSN-HAL, which was smaller than that of MSN-HAS and MSN-HAM samples. The cellular uptake of MSN-HA samples on HeLa cells at 37 °C was studied by optical and electron microscopy. HA chain length affected significantly the cellular uptake that occurred at a higher extent for MSN-NH2 and MSN-HAS than for MSN-HAM and MSN-HAL samples. Cellular uptake experiments carried out at 4 °C showed that the internalization process was inhibited for MSN-HA samples but not for MSN-NH2. This suggests the occurrence of two different mechanisms of internalization. For MSN-NH2 the uptake is mainly driven by the attractive electrostatic interaction with membrane phospholipids, while MSN-HA internalization involves CD44 receptors overexpressed in HeLa cells.


Assuntos
Biopolímeros/química , Ácido Hialurônico/química , Nanopartículas/química , Dióxido de Silício/química , Biopolímeros/administração & dosagem , Biopolímeros/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Tamanho da Partícula , Porosidade
17.
PLoS One ; 12(9): e0184180, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886069

RESUMO

Aimed at providing a contribution to the optimization of cryopreservation processes, the present work focuses on the osmotic behavior of human mesenchymal stem cells (hMSCs). Once isolated from the umbilical cord blood (UCB) of three different donors, hMSCs were characterized in terms of size distribution and their osmotic properties suitably evaluated through the exposure to hypertonic and isotonic aqueous solutions at three different temperatures. More specifically, inactive cell volume and cell permeability to water and di-methyl sulfoxide (DMSO) were measured, being cell size determined using impedance measurements under both equilibrium and dynamic conditions. Experimental findings indicate that positive cell volume excursions are limited by the apparent increase of inactive volume, which occurs during both the shrink-swell process following DMSO addition and the subsequent restoration of isotonic conditions in the presence of hypertonic solutions of impermeant or permeant solutes. Based on this evidence, hMSCs must be regarded as imperfect osmometers, and their osmotic behavior described within a scenario no longer compatible with the simple two-parameter model usually utilized in the literature. In this respect, the activation of mechano-sensitive ion-channels seemingly represents a reasonable hypothesis for rationalizing the observed osmotic behavior of hMSCs from UCB.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Osmose , Algoritmos , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular , Permeabilidade da Membrana Celular , Separação Celular , Células Cultivadas , Criopreservação/métodos , Crioprotetores , Sangue Fetal/citologia , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/citologia , Modelos Teóricos , Pressão Osmótica , Temperatura
18.
J Cancer ; 8(9): 1629-1639, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775782

RESUMO

Human thyroid cancer derived cell lines are widely used to study the mechanisms involved in thyroid carcinogenesis. However, there is limited availability of non-cross-contaminated cancer cell lines derived from papillary thyroid carcinoma (PTC), and the B-CPAP cell line is one of the few such lines. B-CPAP cells have been genetically and cytogenetically well-characterized, but details of their stemness features remain uncertain. Considering that this cell line is extensively used for in vitro studies on thyroid tumorigenesis, we broaden its functional and molecular profiles as well as the tumorigenic capacity. We used functional assays (sphere-forming capacity and efficiency), assessed self-renewal and propagation efficiency and tested in vivo tumorigenicity in Hsd:Athymic Nude-Foxn1nu mice. Expression of markers of stemness, differentiation, and epithelial-mesenchymal transition were estimated at RNA and protein levels in adherent parental cells and sphere-forming cells. Functional aspects and stemness features were compared with normal thyrocytes. Protein expression of xenograft tumors was evaluated by immunohistochemistry. B-CPAP sphere-forming cells were able to form thyrospheres theoretically indefinitely in an appropriate serum-free medium, reverting to the adherent parental cell phenotype when cultured in differentiation medium. Different expression of ALDH1-A1 and CD44 stemness markers and TTF-1 and CK19 differentiation markers allowed discrimination between isolated sphere-forming cells and adherent parental cells, indicating that sphere-forming cells retained stem-like features. In keeping with these observations, tumorigenicity assays confirmed that, relative to parental adherent cells, thyrospheres had enhanced capacity to initiate xenograft tumors. Thyrospheres from normal cell line retained very low functional capacity, as well as different stemness markers expression compared to tumor thyrospheres. Our findings may constitute a useful background to develop an in vitro model for assessing the origin and progression of papillary thyroid carcinoma bearing BRAFV600E and TERT promoter mutations.

19.
Hum Mol Genet ; 25(20): 4473-4483, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28172957

RESUMO

TAR deoxyribonucleic acid-binding protein 43 (TDP-43) is a key protein in the pathogenesis of amyoptrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Recent studies suggest that mutations in the TDP-43 coding gene, TARDBP, as well as variations in TDP-43 protein expression levels may disrupt the dynamics of stress granules (SGs). However, it remains unclear whether the pathogenetic effect of the TDP-43 protein is exerted at the cytoplasmic level, through direct participation to SG composition, or at nuclear level, through control of proteins essential to SG assembly. To clarify this point, we investigated the dynamics of SG formation in primary skin fibroblast cultures from the patients with ALS together with the A382T mutation and the patients with ALS and healthy controls with wild-type TDP-43. Under stress conditions induced by sodium arsenite, we found that in human fibroblasts TDP-43 did not translocate to the SGs but instead contributed to the SG formation through a regulatory effect on the G3BP1 core protein. We found that the A382T mutation caused a significant reduction in the number of SGs per cell (P < 0.01) as well as the percentage of cells that form SGs (P < 0.00001). Following stress stimuli, a significant decrease of viability was observed for cells with the TDP-43 A382T mutation (P < 0.0005). We can therefore conclude that the A382T mutation caused a reduction in the ability of cells to respond to stress through loss of TDP-43 function in SG nucleation. The pathogenetic action revealed in our study model does not seem to be mediated by changes in the localization of the TDP-43 protein.


Assuntos
Morte Celular , Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a DNA/genética , Mutação de Sentido Incorreto , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Arsenitos/toxicidade , Células Cultivadas , Grânulos Citoplasmáticos/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Compostos de Sódio/toxicidade , Estresse Fisiológico/efeitos dos fármacos
20.
ACS Biomater Sci Eng ; 2(5): 741-751, 2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-33440571

RESUMO

Mesoporous silica nanoparticles (MSNs), based on the MCM-41 matrix, were functionalized with amino groups, and then with hyaluronic acid (HA) or chitosan (CHIT) to fabricate bioactive conjugates. The role of the functional groups toward cytotoxicity and cellular uptake was investigated using 3T3 mouse fibroblast cells. A very high biocompatibility of MSN-NH2, MSN-HA and MSN-CHIT matrices was assessed through the MTS biological assay and Coulter counter evaluation. No significant differences in cytotoxicity data arise from the presence of different functional groups in the investigated MSNs. Fluorescence microscopy experiments performed using fluorescein isothiocyanate-conjugated MSN-NH2, MSN-HA, and MSN-CHIT, and transmission electron microscopy experiments performed on slices of the investigated systems embedded in epoxy resins give evidence of significant differences due to type of functionalization in terms of cellular uptake and stability of the particles in the biological medium. MSN-NH2 and MSN-HA conjugates are easily internalized, the uptake of the HA-functionalized MSNs being much higher than that of the -NH2-functionalized MSNs. Differently, MSN-CHIT conjugates tend to give large aggregates dispersed in the medium or localized at the external surface of the cell membranes. Both fluorescence microscopy and TEM images show that the MSNs are distributed in the cytoplasm of the cells in the case of MSN-NH2 and MSN-HA, whereas only a few particles are internalized in the case of MSN-CHIT. Flow cytometry experiments confirmed quantitatively the selectively high cellular uptake of MSN-HA particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA