Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 21(4): 423-429, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35190656

RESUMO

Charge neutrality and their expected itinerant nature makes excitons potential transmitters of information. However, exciton mobility remains inaccessible to traditional optical experiments that only create and detect excitons with negligible momentum. Here, using angle-resolved photoemission spectroscopy, we detect dispersing excitons in the quasi-one-dimensional metallic trichalcogenide, TaSe3. The low density of conduction electrons and the low dimensionality in TaSe3 combined with a polaronic renormalization of the conduction band and the poorly screened interaction between these polarons and photo-induced valence holes leads to various excitonic bound states that we interpret as intrachain and interchain excitons, and possibly trions. The thresholds for the formation of a photo-hole together with an exciton appear as side valence bands with dispersions nearly parallel to the main valence band, but shifted to lower excitation energies. The energy separation between side and main valence bands can be controlled by surface doping, enabling the tuning of certain exciton properties.


Assuntos
Elétrons
2.
Adv Mater ; 33(33): e2101610, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34224181

RESUMO

Topological magnetic charge Q is a fundamental parameter that describes the magnetic domains and determines their intriguing electromagnetic properties. The ability to switch Q in a controlled way by electrical methods allows for flexible manipulation of electromagnetic behavior in future spintronic devices. Here, the room-temperature current-controlled topological magnetic transformations between Q = -1 skyrmions and Q = 0 stripes or type-II bubbles in a kagome crystal Fe3 Sn2 are reported. It is shown that reproducible and reversible skyrmion-bubble and skyrmion-stripe transformations can be achieved by tuning the density of nanosecond pulsed current of the order of ≈1010 A m-2 . Further numerical simulations suggest that spin-transfer torque combined with Joule thermal heating effects determine the current-induced topological magnetic transformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA