Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 7(18): 16055-16062, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571772

RESUMO

1,4-Dihydropyridines (1,4-DHPs) hold a top-notch position in the pharmaceutical world due to a broader spectrum of applications, whereas the carboxylic moiety has been an integral part of the physiological world, effective food preservatives, and antimicrobial agents. Seeking the enormous potential and applications of these two classes, we worked to combine these to synthesize 2,2'-[3,5-bis(ethoxycarbonyl)-4-phenyl-1,4-dihydropyridine-2,6-diyl]diacetic acid the novel dicarboxylic derivatives of 1,4-DHP (9a-k) achieved via the electro-carboxylation of tetrasubstituted-1,4-dihydropyridines (8a-k) derivatives using Mg-Pt electrodes in an undivided cell. The targeted compounds were established by 1H, 13C NMR, IR, and ESI-MS. Further, the synthesized compounds show excellent resistance against various microbes and the activity increased 2-3 folds after the introduction of acid groups. Compound 9b (against E. coli, S. aureus, B. subtilis, A. niger, and P. glabrum), 9d (against E. coli, K. pneumonia, S. aureus, A. janus, and F. oxysporum), 9f (against E. coli and P. fluorescens), and 9k (against F. oxysporum and P. glabrum) were found to be highly active at 4 µg/mL with reference to standard amoxicillin and fluconazole. Further, the present synthetic protocol would open new gates for other researchers to develop new molecules by bioisosteres of these substrates.

2.
Anticancer Agents Med Chem ; 20(17): 2012-2024, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753024

RESUMO

BACKGROUND: Recently, the application of cancer nanotechnology-based drug delivery to cancer cells has arisen as an important method to resolve multiple molecular, biophysical, and biochemical obstacles, which the body is preparing to resist against the productive implementation of chemotherapeutic medications. Drug delivery technologies focused on nanoparticles, which have resolved some of the drawbacks of conventional chemotherapy as, decreased drug viscosity, chemo-resistance, precise malignity, limited medicative measures with low oral bioactivity. Due to their adjustable size and surface properties, the half-life period of a drug can be increased in the bloodstream. OBJECTIVE: The aim of the current study is to collect and document the data available on the drug delivery system for anticancer drugs. The present study includes some of the drug carriers like liposomes, carbon dots, micelles, carbon nanotubes, magnetic nanoparticles, etc. Methods: To write this review, an exhaustive literature survey was carried out using relevant work published in various SCI, Scopus, and non-SCI indexed journals. The different search engines used to download the research/ review papers are Google search, PubMed, Science Direct, Google Scholar, Scientific Information Database and Research Gate, etc. Results: Nanotechnology offers better pharmacokinetics, reduces the systematic toxicities related to the chemotherapies and a better route of drug administration. In the analysis, we critically highlight recent studies on carcinoma-fighting nanotechnology. CONCLUSION: In the present study, different kinds of nano-based drug delivery systems have been discussed along with their characteristic features, the encapsulation of anticancer agents into different types of nanometresized vehicles and their general mechanism.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nanotecnologia , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Estrutura Molecular , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA