Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biomater Sci ; 7(6): 2582-2599, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30977482

RESUMO

Keratinocyte growth factor (KGF) has a good therapeutic effect on injured corneas. However, due to the washout of tears and blinking, locally administrated KGF usually has a short residence time on the surface of an injured cornea, resulting in its poor bioavailability. Herein, a bioadhesive hydrogel is described produced using cysteine-modified γ-polyglutamic acid (PGA-Cys) as the hydrogel-forming material to locally deliver KGF. A series of PGA-Cys polymers with different graft ratios of cysteine were firstly synthesized and carefully characterized. Thereafter, the PGA-Cys hydrogel was screened by changing the graft ratio of cysteine and polymer concentration, and the apparent viscosities and bioadhesive force were also carefully investigated. It was found that PGA-Cys polymers with different graft ratios of cysteine exhibited tunable apparent viscosity and bioadhesive properties at the same polymer concentration. When PGA-Cys with a graft ratio of 1.5 mmol g-1 of cysteine (PGA-Cys-1.5) was used as hydrogel-forming material, the hydrogel exhibited a good gelation property with an apparent viscosity of 5.2 Pa s and strong bioadhesive force of 167 ± 0.5 mN. In vitro release study showed that KGF was slowly released from PGA-Cys-1.5 hydrogel over a longer time in comparison to PGA solution alone. Moreover, PGA-Cys-1.5 hydrogel enabled most of the encapsulated KGF to be retained on the cornea and conjunctiva after local administration. Meanwhile, the morphology of the corneal epithelium in the alkali-injured cornea of mice was well repaired after 7 days of treatment with KGF-PGA-Cys-1.5 hydrogel. The therapeutic mechanism was strongly associated with inhibiting corneal inflammation and neovascularization, promoting proliferation of the corneal epithelium and inhibiting apoptosis. Overall, the use of the bioadhesive PGA-Cys hydrogel with a suitable KGF release profile may be a more promising approach than using PGA solution alone and KGF to repair injured corneas.


Assuntos
Lesões da Córnea/tratamento farmacológico , Portadores de Fármacos/química , Fator 7 de Crescimento de Fibroblastos/química , Hidrogéis/química , Ácido Poliglutâmico/análogos & derivados , Adesividade , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Lesões da Córnea/patologia , Cisteína/química , Preparações de Ação Retardada , Fator 7 de Crescimento de Fibroblastos/farmacologia , Fator 7 de Crescimento de Fibroblastos/uso terapêutico , Fibrose , Camundongos , Células NIH 3T3 , Neovascularização Patológica/tratamento farmacológico , Ácido Poliglutâmico/química
2.
Drug Deliv ; 25(1): 1302-1318, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29869524

RESUMO

Currently, combination drug therapy is one of the most effective approaches to glioma treatment. However, due to the inherent dissimilar pharmacokinetics of individual drugs and blood brain barriers, it was difficult for the concomitant drugs to simultaneously be delivered to glioma in an optimal dose ratio manner. Herein, a cationic micellar core (Cur-M) was first prepared from d-α-tocopherol-grafted-ε-polylysine polymer to encapsulate the hydrophobic curcumin, followed by dopamine-modified-poly-γ-glutamic acid polymer further deposited on its surface as a anion shell through pH-sensitive linkage to encapsulate the hydrophilic doxorubicin (DOX) hydrochloride. By controlling the combinational Cur/DOX molar ratio at 3:1, a pH-sensitive core-shell nanoparticle (PDCP-NP) was constructed to simultaneously target the cancer stem cells (CSCs) and the differentiated tumor cells. PDCP-NP exhibited a dynamic diameter of 160.8 nm and a zeta-potential of -30.5 mV, while its core-shell structure was further confirmed by XPS and TEM. The ratiometric delivery capability of PDCP-NP was confirmed by in vitro and in vivo studies, in comparison with the cocktail Cur/DOX solution. Meanwhile, the percentage of CSCs in tumors was significantly decreased from 4.16% to 0.95% after treatment with PDCP-NP. Overall, PDCP-NP may be a promising carrier for the combination therapy with drug candidates having dissimilar physicochemical properties.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Glioma/tratamento farmacológico , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Curcumina/administração & dosagem , Curcumina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Glutâmico/química , Humanos , Concentração de Íons de Hidrogênio , Masculino , Micelas , Células-Tronco Neoplásicas/efeitos dos fármacos , Polilisina/química , Polímeros/química , Ratos , Ratos Sprague-Dawley , alfa-Tocoferol/química
3.
Colloids Surf B Biointerfaces ; 160: 704-714, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035818

RESUMO

A poor percutaneous penetration capability for most topical anti-inflammatory drugs is one of the main causes compromising their therapeutic effects on psoriatic skin. Even though curcumin has shown a remarkable efficacy in the treatment of psoriasis, its effective penetration through the stratum corneum is still a major challenge during transdermal delivery. The aim of our study was to design skin-permeating nanoparticles (NPs) to facilitate delivery of curcumin to the deeper layers of the skin. A novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL) was synthesized and self-assembled into polymeric nanoparticles. The nanoparticles of VES-g-ε-PLL exhibiting an ultra-small hydrodynamic diameter (24.4nm) and a positive Zeta potential (19.6mV) provided a strong skin-penetrating ability in vivo. Moreover, curcumin could effectively be encapsulated in the polymeric nanoparticles with a drug loading capacity of 3.49% and an encapsulating efficiency of 78.45%. In order to prolong the retention time of the ultra-small curcumin-loaded nanoparticles (CUR-NPs) in the skin, silk fibroin was used as a hydrogel-based matrix to further facilitate topical delivery of the model drug. In vitro studies showed that CUR-NPs incorporated in silk fibroin hydrogel (CUR-NPs-gel) exhibited a slower release profile of curcumin than the plain CUR-gel, without compromising the skin penetration ability of CUR-NPs. In vivo studies on miquimod-induced psoriatic mice showed that CUR-NPs-gel exhibited a higher therapeutic effect than CUR-NPs as the former demonstrated a more powerful skin-permeating capability and a more effective anti-keratinization process. CUR-NPs-gel was therefore able to inhibit the expression of inflammatory cytokines (TNF-α, NF-κB and IL-6) to a greater extent. In conclusion, the permeable nanoparticle-gel system may be a potential carrier for the topical delivery of lipophilic anti-psoriatic drugs.


Assuntos
Curcumina/administração & dosagem , Fibroínas/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanopartículas/química , Psoríase/tratamento farmacológico , Pele/metabolismo , Administração Cutânea , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Curcumina/química , Curcumina/farmacocinética , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polímeros/química , Psoríase/patologia , Seda/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA