Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
FASEB J ; 38(1): e23338, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038723

RESUMO

Tristetraprolin (TTP; also known as NUP475, GOS24, or TIS11), encoded by Zfp36, is an RNA-binding protein that regulates target gene expression by promoting mRNA decay and preventing translation. Although previous studies have indicated that TTP deficiency is associated with systemic inflammation and a catabolic-like skeletal phenotype, the mechanistic underpinnings remain unclear. Here, using both TTP-deficient (TTPKO) and myeloid-specific TTPKO (cTTPKO) mice, we reveal that global absence or loss of TTP in the myeloid compartment results in a reduced bone microarchitecture, whereas gain-of-function TTP knock-in (TTPKI) mice exhibit no significant loss of bone microarchitecture. Flow cytometry analysis revealed a significant immunosuppressive immune cell phenotype with increased monocytic myeloid-derived suppressor cells (M-MDSCs) in TTPKO and cTTPKO mice, whereas no significant changes were observed in TTPKI mice. Single-cell transcriptomic analyses of bone marrow myeloid progenitor cell populations indicated a dramatic increase in early MDSC marker genes for both cTTPKO and TTPKO bone marrow populations. Consistent with these phenotypic and transcriptomic data, in vitro osteoclastogenesis analysis of bone marrow M-MDSCs from cTTPKO and TTPKO displayed enhanced osteoclast differentiation and functional capacity. Focused transcriptomic analyses of differentiated M-MDSCs showed increased osteoclast-specific transcription factors and cell fusion gene expression. Finally, functional data showed that M-MDSCs from TTP loss-of-function mice were capable of osteoclastogenesis and bone resorption in a context-dependent manner. Collectively, these findings indicate that TTP plays a central role in regulating osteoclastogenesis through multiple mechanisms, including induction of M-MDSCs that appear to regulate skeletal phenotype.


Assuntos
Células Supressoras Mieloides , Tristetraprolina , Animais , Camundongos , Osteoclastos/metabolismo , Osteogênese , Fenótipo , Tristetraprolina/genética
3.
Cell Rep ; 42(2): 112120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36774550

RESUMO

Intestinal colonization of the oral bacterium Haemophilus parainfluenzae has been associated with Crohn's disease (CD) severity and progression. This study examines the role of periodontal disease (PD) as a modifier for colonization of H. parainfluenzae in patients with CD and explores the mechanisms behind H. parainfluenzae-mediated intestinal inflammation. Fifty subjects with and without CD were evaluated for the presence of PD, and their oral and fecal microbiomes were characterized. PD is associated with increased levels of H. parainfluenzae strains in subjects with CD. Oral inoculation of H. parainfluenzae elicits strain-dependent intestinal inflammation in murine models of inflammatory bowel disease, which is associated with increased intestinal interferon-γ (IFN-γ)+ CD4+ T cells and disruption of the host hypusination pathway. In summary, this study establishes a strain-specific pathogenic role of H. parainfluenzae in intestinal inflammation and highlights the potential effect of PD on intestinal colonization by pathogenic H. parainfluenzae strains in patients with CD.


Assuntos
Doença de Crohn , Doenças Periodontais , Humanos , Animais , Camundongos , Haemophilus parainfluenzae , Doença de Crohn/complicações , Doença de Crohn/metabolismo , Inflamação
4.
PLoS Comput Biol ; 18(8): e1010373, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35926003

RESUMO

A microbial community is a dynamic system undergoing constant change in response to internal and external stimuli. These changes can have significant implications for human health. However, due to the difficulty in obtaining longitudinal samples, the study of the dynamic relationship between the microbiome and human health remains a challenge. Here, we introduce a novel computational strategy that uses massive cross-sectional sample data to model microbiome landscapes associated with chronic disease development. The strategy is based on the rationale that each static sample provides a snapshot of the disease process, and if the number of samples is sufficiently large, the footprints of individual samples populate progression trajectories, which enables us to recover disease progression paths along a microbiome landscape by using computational approaches. To demonstrate the validity of the proposed strategy, we developed a bioinformatics pipeline and applied it to a gut microbiome dataset available from a Crohn's disease study. Our analysis resulted in one of the first working models of microbial progression for Crohn's disease. We performed a series of interrogations to validate the constructed model. Our analysis suggested that the model recapitulated the longitudinal progression of microbial dysbiosis during the known clinical trajectory of Crohn's disease. By overcoming restrictions associated with complex longitudinal sampling, the proposed strategy can provide valuable insights into the role of the microbiome in the pathogenesis of chronic disease and facilitate the shift of the field from descriptive research to mechanistic studies.


Assuntos
Doença de Crohn , Microbiota , Doença Crônica , Estudos Transversais , Progressão da Doença , Humanos
5.
Mol Oral Microbiol ; 37(2): 42-52, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34958712

RESUMO

Recent epidemiological studies have shown that inflammatory bowel disease is associated with periodontal disease. The oral-gut microbiota axis is a potential mechanism intersecting the two diseases. Porphyromonas gingivalis is currently considered a keystone oral pathogen involved in periodontal disease pathogenesis and disease progression. Recent studies have shown that oral ingestion of P. gingivalis leads to intestinal inflammation. However, the molecular underpinnings of P. gingivalis-mediated gut inflammation have remained elusive. In this study, we show that the oral administration of P. gingivalis indeed leads to ileal inflammation and alteration in gut microbiota with significant reduction in bacterial alpha diversity despite the absence of P. gingivalis in the lower gastrointestinal tract. Utilizing an antibiotic-conditioned mouse model, cecal microbiota transfer experiments were performed to demonstrate that P. gingivalis-induced dysbiotic gut microbiota is sufficient to reproduce gut pathology. Furthermore, we observed a significant expansion in small intestinal lamina propria IL9+ CD4+ T cells, which was negatively correlated with both bacterial and fungal alpha diversity, signifying that P. gingivalis-mediated intestinal inflammation may be due to the subsequent loss of gut microbial diversity. Finally, we detected changes in gene expression related to gut epithelial barrier function, showing the potential downstream effect of intestinal IL9+ CD4+ T-cell induction. This study for the first time showed the mechanism behind P. gingivalis-mediated intestinal inflammation where P. gingivalis indirectly induces intestinal IL9+ CD4+ T cells and inflammation by altering the gut microbiota. Understanding the mechanism of P. gingivalis-mediated intestinal inflammation may lead to the development of novel therapeutic approaches to alleviate the morbidity from inflammatory bowel disease patients with periodontal disease.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Doenças Periodontais , Animais , Linfócitos T CD4-Positivos , Humanos , Inflamação/patologia , Interleucina-9 , Camundongos , Doenças Periodontais/microbiologia , Porphyromonas gingivalis/genética , Linfócitos T
6.
Arthritis Res Ther ; 23(1): 287, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784965

RESUMO

BACKGROUND: Osteoarthritis (OA) subsequent to acute joint injury accounts for a significant proportion of all arthropathies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid progenitor cells classically known for potent immune-suppressive activity; however, MDSCs can also differentiate into osteoclasts. In addition, this population is known to be expanded during metabolic disease. The objective of this study was to determine the role of MDSCs in the context of OA pathophysiology. METHODS: In this study, we examined the differentiation and functional capacity of MDSCs to become osteoclasts in vitro and in vivo using mouse models of OA and in MDSC quantitation in humans with OA pathology relative to obesity status. RESULTS: We observed that MDSCs are expanded in mice and humans during obesity. MDSCs were expanded in peripheral blood of OA subjects relative to body mass index and in mice fed a high-fat diet (HFD) compared to mice fed a low-fat diet (LFD). In mice, monocytic MDSC (M-MDSC) was expanded in diet-induced obesity (DIO) with a further expansion after destabilization of the medial meniscus (DMM) surgery to induce post-traumatic OA (PTOA) (compared to sham-operated controls). M-MDSCs from DIO mice had a greater capacity to form osteoclasts in culture with increased subchondral bone osteoclast number. In humans, we observed an expansion of M-MDSCs in peripheral blood and synovial fluid of obese subjects compared to lean subjects with OA. CONCLUSION: These data suggest that MDSCs are reprogrammed in metabolic disease, with the potential to contribute towards OA progression and severity.


Assuntos
Células Supressoras Mieloides , Osteoartrite , Animais , Remodelação Óssea , Diferenciação Celular , Camundongos , Osteoclastos
7.
Oral Oncol ; 120: 105401, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34182221

RESUMO

Mitogen-activated protein kinases (MAPKs) require MAPK phosphatases (MKPs) for deactivation of MAPK intracellular signaling. MKP-1 (encoded by Dusp1) is a key negative regulator of MAPKs and prior reports have indicated that MKP-1 regulates oral cancer-associated inflammation and leukocyte infiltration. OBJECTIVE: To determine the significance of myeloid-based expression of MKP-1 in oral cancer. METHODS: The Cancer Genome Atlas (TCGA) was used to address DUSP1 expression in oral squamous cell carcinoma (OSCC). Syngeneic and carcinogen-induced mouse models using global and myeloid-specific Dusp-1 deficient mice with immunophenotypic, histologic, and transcriptomic analyses and in vitro migration assays. RESULTS: Data from TCGA indicates the DUSP1 expression is inversely related to oral cancer burden and nodal involvement. Using murine models of OSCC, the role of MKP-1 signaling in tumor associated macrophages (TAMs) was assessed. Dusp1-deficient mice had increased tumor burden and TAM infiltrate with increased M2 macrophage polarization. Transcriptomic signatures of TAMs from Dusp1-deficent mice indicated a pro-metastatic phenotype as well as concomitant differences in myeloid-associated genes, cytokine/chemokine signaling, and Notch signaling consistent with tumor progression. In vitro and in vivo assays revealed mouse OSCC cells had a higher migration rate using TAM cell-free supernatant from Dusp1 deficiency mice compared to controls with enhanced regional cervical lymph node metastasis, respectively. To validate TAM studies using implantable mouse models, an OSCC progression model with conditional myeloid-specific Dusp-1 deficient mice demonstrated enhanced OSCC disease progression, characterized by advanced onset, histological stage, and tumor burden. CONCLUSION: Myeloid-based Dusp1-deficiency increases OSCC burden and metastasis through alteration in TAM recruitment, gene profile, and polarity suggesting that MKP-1 could be a viable target to reprogram TAM to limit local/regional OSCC extension.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Polaridade Celular , Progressão da Doença , Metástase Linfática , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Neoplasias Bucais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Transcriptoma , Macrófagos Associados a Tumor
8.
Sci Rep ; 9(1): 17904, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784610

RESUMO

Alzheimer's disease (AD) affects an estimated 5.8 million Americans, and advanced age is the greatest risk factor. AD patients have altered intestinal microbiota. Accordingly, depleting intestinal microbiota in AD animal models reduces amyloid-beta (Aß) plaque deposition. Age-related changes in the microbiota contribute to immunologic and physiologic decline. Translationally relevant dietary manipulations may be an effective approach to slow microbiota changes during aging. We previously showed that calorie restriction (CR) reduced brain Aß deposition in the well-established Tg2576 mouse model of AD. Presently, we investigated whether CR alters the microbiome during aging. We found that female Tg2576 mice have more substantial age-related microbiome changes compared to wildtype (WT) mice, including an increase in Bacteroides, which were normalized by CR. Specific gut microbiota changes were linked to Aß levels, with greater effects in females than in males. In the gut, Tg2576 female mice had an enhanced intestinal inflammatory transcriptional profile, which was reversed by CR. Furthermore, we demonstrate that Bacteroides colonization exacerbates Aß deposition, which may be a mechanism whereby the gut impacts AD pathogenesis. These results suggest that long-term CR may alter the gut environment and prevent the expansion of microbes that contribute to age-related cognitive decline.


Assuntos
Doença de Alzheimer/microbiologia , Restrição Calórica , Microbioma Gastrointestinal , Doença de Alzheimer/dietoterapia , Peptídeos beta-Amiloides/metabolismo , Animais , Feminino , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Transcriptoma
9.
Neuroscience ; 386: 175-181, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29966722

RESUMO

Periventricular leukomalacia (PVL) is a severe type of white matter damage in premature infants and the most common cause of cerebral palsy. It is generally known to be caused by hypoxia and inflammation. Currently there is no effective treatment available, in part due to that the pathogenesis of the disease has not been well understood. The p38α mitogen-activated protein kinase (MAPK) is the serine/threonine kinase and several in vitro studies demonstrated that p38 MAPK is essential for oligodendroglial differentiation and myelination. Indeed, our nerve/glial antigen 2 (NG2)-specific oligodendroglial p38α MAPK conditional knockout (CKO) mice revealed its complex roles in myelination and remyelination. To identify the specific in vivo roles of oligodendroglial p38α MAPK in PVL, we generated a mouse PVL model by combination of LPS-mediated inflammation and hypoxia-ischemia in NG2-p38α MAPK CKO mice. Our results demonstrate that a selective deletion of p38α MAPK in oligodendrocyte did not attenuate myelination defects in the mouse model of PVL. Myelination phenotype revealed by MBP immunostaining was not significantly affected in the p38α MAPK CKO mice compared to the wildtype after PVL induction. The electron microscopic images demonstrated that the microstructure of myelin structures was not significantly different between the wild-type and p38α MAPK CKO mice. In addition, oligodendrocyte degeneration in the corpus callosum white matter area was unaffected in the p38α MAPK CKO during and after the PVL induction. These data indicate that p38α MAPK in oligodendrocyte has minimal effect on myelination and oligodendrocyte survival in the mouse PVL model.


Assuntos
Modelos Animais de Doenças , Leucomalácia Periventricular/genética , Leucomalácia Periventricular/patologia , Proteína Quinase 14 Ativada por Mitógeno/genética , Fibras Nervosas Mielinizadas/patologia , Oligodendroglia/patologia , Animais , Animais Recém-Nascidos , Deleção de Genes , Camundongos , Camundongos Knockout , Bainha de Mielina/enzimologia , Bainha de Mielina/genética , Fibras Nervosas Mielinizadas/enzimologia
10.
Opt Express ; 25(22): 27886-27895, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092257

RESUMO

We demonstrate enhanced light out-coupling efficiency of organic light-emitting diodes by applying a multilayer stacked electrode structure consisting of fast and cost-effective sol-gel processed tantalum pentoxide (Ta2O5), thin layer of Au and molybdenum trioxide (MoO3). The application of the Ta2O5/Au/MoO3 electrode can modulate the optical characteristics of the device due to the optical microcavity effect. The refractive index of the sol-gel processed Ta2O5 thin film varied depending on the annealing temperature and reached a maximum at 400 °C (n = 2.2 at 512 nm). The influence of the refractive index of the Ta2O5 layer and the thickness of the multilayer electrode stack on the optical microcavity effect was systematically investigated. The device with the Ta2O5/Au/MoO3 electrode, fabricated at an optimum condition based on the simulation result by calculating the photon flux, exhibited 52% enhancement in light out-coupling efficiency at 1000 cd/m2 and improved color stability with the viewing angle, having near-Lambertian emission.

12.
J Neurosci ; 37(12): 3127-3137, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28193690

RESUMO

Differentiation and maturation of oligodendrocyte progenitor cells (OPCs) involve the assembly and disassembly of actin microfilaments. However, how actin dynamics are regulated during this process remains poorly understood. Leucine-rich repeat and Ig-like domain-containing Nogo receptor interacting protein 1 (LINGO-1) is a negative regulator of OPC differentiation. We discovered that anti-LINGO-1 antibody-promoted OPC differentiation was accompanied by upregulation of cytoplasmic gelsolin (cGSN), an abundant actin-severing protein involved in the depolymerization of actin filaments. Treating rat OPCs with cGSN siRNA reduced OPC differentiation, whereas overexpression of cGSN promoted OPC differentiation in vitro and remyelination in vivo Furthermore, coexpression of cGSN and LINGO-1 blocked the inhibitory effect of LINGO-1. Our study demonstrates that cGSN works downstream of LINGO-1 signaling pathway, which enhances actin dynamics and is essential for OPC morphogenesis and differentiation. This finding may lead to novel therapeutic approaches for the treatment of demyelinating diseases such as multiple sclerosis (MS).SIGNIFICANCE STATEMENT Myelin loss and subsequent axon degeneration contributes to a variety of neurological diseases, such as multiple sclerosis (MS). Understanding the regulation of myelination by oligodendrocytes is therefore critical for developing therapies for the treatment of MS. We previously demonstrated that leucine-rich repeat and Ig-like domain-containing Nogo receptor interacting protein 1 (LINGO-1) is a negative regulator of oligodendrocyte differentiation and that anti-LINGO-1 promotes remyelination in preclinical animal models for MS and in a phase II acute optic neuritis clinical trial (RENEW). The mechanism by which LINGO-1 regulates oligodendrocyte differentiation is unknown. Here, we demonstrate that LINGO-1 regulates oligodendrocyte differentiation and maturation through the cytoplasmic gelsolin signaling pathway, providing new drug targets for the treatment of demyelination diseases.


Assuntos
Actinas/metabolismo , Diferenciação Celular/fisiologia , Gelsolina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Animais , Células Cultivadas , Citoplasma/metabolismo , Feminino , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
13.
Int J Syst Evol Microbiol ; 67(5): 1247-1254, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28100298

RESUMO

To better characterize murine intestinal microbiota, a large number (187) of Gram-positive-staining, rod- and coccoid-shaped, and facultatively or strictly anaerobic bacteria were isolated from small and large intestinal contents from mice. Based on 16S rRNA gene sequencing, a total 115 isolates formed three phylogenetically distinct clusters located within the family Erysipelotrichaceae. Group 1, as represented by strain NYU-BL-A3T, was most closely related to Allobaculum stercoricanis, with 16S rRNA gene sequence similarity values of 87.7 %. A second group, represented by NYU-BL-A4T, was most closely related to Faecalibaculum rodentium, with 86.6 % 16S rRNA gene sequence similarity. A third group had a nearly identical 16S rRNA gene sequence (99.9 %) compared with the recently described Faecalibaculum rodentium, also recovered from a laboratory mouse; however, this strain had a few differences in biochemical characteristics, which are detailed in an emended description. The predominant (>10 %) cellular fatty acids of strain NYU-BL-A3T were C16 : 0 and C18 : 0, and those of strain NYU-BL-A4T were C10 : 0, C16 : 0, C18 : 0 and C18 : 1ω9c. The two groups could also be distinguished by multiple biochemical reactions, with the group represented by NYU-BL-A4T being considerably more active. Based on phylogenetic, biochemical and chemotaxonomic criteria, two novel genera are proposed, Ileibacterium valens gen. nov., sp. nov. with NYU-BL-A3T (=ATCC TSD-63T=DSM 103668T) as the type strain and Dubosiella newyorkensis gen. nov., sp. nov. with NYU-BL-A4T (=ATCC TSD-64T=DSM 103457T) as the type strain.


Assuntos
Faecalibacterium/classificação , Intestinos/microbiologia , Camundongos/microbiologia , Filogenia , Tenericutes/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tenericutes/genética , Tenericutes/isolamento & purificação
14.
J Neurosci ; 37(2): 413-421, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077719

RESUMO

Canavan disease is a leukodystrophy caused by aspartoacylase (ASPA) deficiency. The lack of functional ASPA, an enzyme enriched in oligodendroglia that cleaves N-acetyl-l-aspartate (NAA) to acetate and l-aspartic acid, elevates brain NAA and causes "spongiform" vacuolation of superficial brain white matter and neighboring gray matter. In children with Canavan disease, neuroimaging shows early-onset dysmyelination and progressive brain atrophy. Neuron loss has been documented at autopsy in some cases. Prior studies have shown that mice homozygous for the Aspa nonsense mutation Nur7 also develop brain vacuolation. We now report that numbers of cerebral cortical and cerebellar neurons are decreased and that cerebral cortex progressively thins in AspaNur7/Nur7 mice. This neuronal pathology is prevented by constitutive disruption of Nat8l, which encodes the neuronal NAA-synthetic enzyme N-acetyltransferase-8-like. SIGNIFICANCE STATEMENT: This is the first demonstration of cortical and cerebellar neuron depletion and progressive cerebral cortical thinning in an animal model of Canavan disease. Genetic suppression of N-acetyl-l-aspartate (NAA) synthesis, previously shown to block brain vacuolation in aspartoacylase-deficient mice, also prevents neuron loss and cerebral cortical atrophy in these mice. These results suggest that lowering the concentration of NAA in the brains of children with Canavan disease would prevent or slow progression of neurological deficits.


Assuntos
Ácido Aspártico/análogos & derivados , Doença de Canavan/metabolismo , Modelos Animais de Doenças , Neurônios/metabolismo , Animais , Ácido Aspártico/biossíntese , Ácido Aspártico/deficiência , Ácido Aspártico/genética , Doença de Canavan/genética , Doença de Canavan/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/patologia
15.
Pediatr Infect Dis J ; 36(2): 173-178, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27820723

RESUMO

BACKGROUND: Helicobacter pylori colonizes the human stomach of approximately 50% of the world's population, and increases the risk of several gastric diseases. The goal of this study is to compare the gastric microbiota in pediatric patients with and without H. pylori colonization. METHODS: We studied 51 children who underwent gastric endoscopy because of dyspeptic symptoms (18 H. pylori positive and 33 negative). Gastric biopsies were obtained for rapid urease test, culture, histology and DNA extraction. H. pylori was quantified by quantitative polymerase chain reaction and the gastric microbiome studied by V4-16S ribosomal RNA gene high-throughput sequencing. RESULTS: Bacterial richness and diversity of H. pylori-positive specimens were lower than those of negative, and both groups were clearly separated according to beta diversity. Taxonomic analysis confirmed that H. pylori-positive subjects had a higher relative abundance of Helicobacter genus (66.3%) than H. pylori-negative subjects (0.45%). Four phyla (proteobacteria, bacteroidetes, firmicutes and actinobacteria) accounted for >97% of all reads in both groups. Within proteobacteria, gamma- and betaproteobacteria were the most abundant for H. pylori-negative patients, whereas epsilonproteobacteria was for H. pylori positive. H. pylori-positive patients were associated with low body mass index. In the group of underweight patients (body mass index, <18.5), there were 46.1% of H. pylori-positive patients compared with 24% in the nonunderweight group (P = 0.049). Patients with active superficial gastritis in H. pylori-positive patients had the lowest alpha diversity (P = 0.035). CONCLUSIONS: We characterized the gastric microbiota for the first time in children with and without H. pylori and observed that when H. pylori is present, it tends to dominate the microbial community. In the H. pylori-negative patients, there was more relative abundance of gammaproteobacteria, betaproteobacteria, bacteroidia and clostridia classes and a higher bacterial richness and diversity.


Assuntos
Microbioma Gastrointestinal/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Estômago/microbiologia , Adolescente , Bactérias/classificação , Bactérias/genética , Criança , Pré-Escolar , Feminino , Helicobacter pylori/classificação , Humanos , Lactente , Masculino , Projetos Piloto
16.
Nat Microbiol ; 1(11): 16140, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27782139

RESUMO

The early life microbiome plays important roles in host immunological and metabolic development. Because the incidence of type 1 diabetes (T1D) has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota, which predisposes to disease. Using non-obese diabetic mice that are genetically susceptible to T1D, we examined the effects of exposure to either continuous low-dose antibiotics or pulsed therapeutic antibiotics (PAT) early in life, mimicking childhood exposures. We found that in mice receiving PAT, T1D incidence was significantly higher, and microbial community composition and structure differed compared with controls. In pre-diabetic male PAT mice, the intestinal lamina propria had lower Th17 and Treg proportions and intestinal SAA expression than in controls, suggesting key roles in transducing the altered microbiota signals. PAT affected microbial lipid metabolism and host cholesterol biosynthetic gene expression. These findings show that early-life antibiotic treatments alter the gut microbiota and its metabolic capacities, intestinal gene expression and T-cell populations, accelerating T1D onset in non-obese diabetic mice.


Assuntos
Antibacterianos/efeitos adversos , Diabetes Mellitus Tipo 1/etiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Penicilina V/efeitos adversos , Animais , Antibacterianos/administração & dosagem , Colesterol/biossíntese , Esquema de Medicação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Metabolismo dos Lipídeos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Mucosa/efeitos dos fármacos , Mucosa/imunologia , Obesidade , Penicilina V/administração & dosagem , RNA Ribossômico 16S , Linfócitos T Reguladores , Células Th17
17.
Nat Commun ; 6: 7486, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26123276

RESUMO

Mammalian species have co-evolved with intestinal microbial communities that can shape development and adapt to environmental changes, including antibiotic perturbation or nutrient flux. In humans, especially children, microbiota disruption is common, yet the dynamic microbiome recovery from early-life antibiotics is still uncharacterized. Here we use a mouse model mimicking paediatric antibiotic use and find that therapeutic-dose pulsed antibiotic treatment (PAT) with a beta-lactam or macrolide alters both host and microbiota development. Early-life PAT accelerates total mass and bone growth, and causes progressive changes in gut microbiome diversity, population structure and metagenomic content, with microbiome effects dependent on the number of courses and class of antibiotic. Whereas control microbiota rapidly adapts to a change in diet, PAT slows the ecological progression, with delays lasting several months with previous macrolide exposure. This study identifies key markers of disturbance and recovery, which may help provide therapeutic targets for microbiota restoration following antibiotic treatment.


Assuntos
Envelhecimento , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Tilosina/farmacologia , Amoxicilina/administração & dosagem , Animais , Antibacterianos/administração & dosagem , Esquema de Medicação , Quimioterapia Combinada , Metabolismo Energético/fisiologia , Fezes/química , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metagenômica , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma , Tilosina/administração & dosagem
18.
J Neurosci ; 35(9): 3756-63, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25740506

RESUMO

Astrocytes are the most abundant cells in the CNS, and have many essential functions, including maintenance of blood-brain barrier integrity, and CNS water, ion, and glutamate homeostasis. Mammalian astrogliogenesis has generally been considered to be completed soon after birth, and to be reactivated in later life only under pathological circumstances. Here, by using genetic fate-mapping, we demonstrate that new corpus callosum astrocytes are continuously generated from nestin(+) subventricular zone (SVZ) neural progenitor cells (NPCs) in normal adult mice. These nestin fate-mapped corpus callosum astrocytes are uniformly postmitotic, express glutamate receptors, and form aquaporin-4(+) perivascular endfeet. The entry of new astrocytes from the SVZ into the corpus callosum appears to be balanced by astroglial apoptosis, because overall numbers of corpus callosum astrocytes remain constant during normal adulthood. Nestin fate-mapped astrocytes also flow anteriorly from the SVZ in association with the rostral migratory stream, but do not penetrate into the deeper layers of the olfactory bulb. Production of new astrocytes from nestin(+) NPCs is absent in the normal adult cortex, striatum, and spinal cord. Our study is the first to demonstrate ongoing SVZ astrogliogenesis in the normal adult mammalian forebrain.


Assuntos
Astrócitos/fisiologia , Corpo Caloso/citologia , Corpo Caloso/fisiologia , Ventrículos Laterais/citologia , Ventrículos Laterais/fisiologia , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Movimento Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nestina/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
19.
Glia ; 63(10): 1671-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25782433

RESUMO

The straightforward concept that accentuated Wnt signaling via the Wnt-receptor-ß-catenin-TCF/LEF cascade (also termed canonical Wnt signaling or Wnt/ß-catenin signaling) delays or blocks oligodendrocyte differentiation is very appealing. According to this concept, canonical Wnt signaling is responsible for remyelination failure in multiple sclerosis and for persistent hypomyelination in periventricular leukomalacia. This has given rise to the hope that pharmacologically inhibiting this signaling will be of therapeutic potential in these disabling neurological disorders. But current studies suggest that Wnt/ß-catenin signaling plays distinct roles in oligodendrogenesis, oligodendrocyte differentiation, and myelination in a context-dependent manner (central nervous system regions, developmental stages), and that Wnt/ß-catenin signaling interplays with, and is subjected to regulation by, other central nervous system factors and signaling pathways. On this basis, we propose the more nuanced concept that endogenous Wnt/ß-catenin activity is delicately and temporally regulated to ensure the seamless development of oligodendroglial lineage cells in different contexts. In this review, we discuss the role Wnt/ß-catenin signaling in oligodendrocyte development, focusing on the interpretation of disparate results, and highlighting areas where important questions remain to be answered about oligodendroglial lineage Wnt/ß-catenin signaling.


Assuntos
Linhagem da Célula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Oligodendroglia/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Humanos
20.
Nat Commun ; 5: 4692, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25198012

RESUMO

Autism spectrum disorders (ASDs) are complex and heterogeneous developmental disabilities affecting an ever-increasing number of children worldwide. The diverse manifestations and complex, largely genetic aetiology of ASDs pose a major challenge to the identification of unifying neuropathological features. Here we describe the neurodevelopmental defects in mice that carry deleterious alleles of the Wdfy3 gene, recently recognized as causative in ASDs. Loss of Wdfy3 leads to a regionally enlarged cerebral cortex resembling early brain overgrowth described in many children on the autism spectrum. In addition, affected mouse mutants display migration defects of cortical projection neurons, a recognized cause of epilepsy, which is significantly comorbid with autism. Our analysis of affected mouse mutants defines an important role for Wdfy3 in regulating neural progenitor divisions and neural migration in the developing brain. Furthermore, Wdfy3 is essential for cerebral expansion and functional organization while its loss-of-function results in pathological changes characteristic of ASDs.


Assuntos
Movimento Celular/genética , Córtex Cerebral/crescimento & desenvolvimento , Transtornos Globais do Desenvolvimento Infantil/genética , Neurogênese/genética , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Relacionadas à Autofagia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA