Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurosci Lett ; 792: 136936, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341924

RESUMO

Multiple sclerosis (MS) is a potentially disabling disease of the brain and spinal cord (central nervous system). The aim of this study was to investigate the effect of 6 weeks of aerobic training on the main proteins of myelin including myelin basic protein (MBP), myelin oligodendrocyte (MOG), myelin associated glycoprotein (MAG), and myelin proteolipid protein (PLP) at hippocampus of C57BL/6 mouse model of cuprizone-induced MS. Twenty-eight female C57BL/6 mice (23 ± 3 g) were randomly divided into four groups (n = 7 per group): control, exercise (Exe), cuprizone (CPZ), and cuprizone with exercise (CPZ + Exe). Exercise groups performed treadmill aerobic exercise training 5 days a week, 15-22 m/min, and 15-60 min, during 6 weeks. Cuprizone were fed to mice at CPZ and CPZ + Exe groups for 6 weeks. Animals were sacrificed after 6 weeks. Biochemical and molecular biology analyses were performed. Mice at CPZ group had decreased myelination of nerve cells in the hippocampus. In addition, the use of CPZ in the hippocampus caused a decrease in the MBP, MOG gene expression, as well as a decrease in the MAG and PLP gene and protein expression compared to the healthy control group. However, performing aerobic exercise with CPZ consumption increased MBP gene expression and increased MAG and PLP protein expression, as well as increased myelination of nerve cells in the hippocampus compared to the CPZ group (p < 0.05). It seems that regular aerobic exercise in the MS model controls the destruction of myelin in the nerve cells of hippocampus by upregulating MBP, MAG and PLP, which can have positive effects on cognitive and motor performance.


Assuntos
Cuprizona , Esclerose Múltipla , Animais , Camundongos , Feminino , Cuprizona/toxicidade , Bainha de Mielina/metabolismo , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Hipocampo , Caminhada , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA