Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(21): 215901, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530683

RESUMO

An accurate prediction of atomic diffusion in Fe alloys is challenging due to thermal magnetic excitations and magnetic transitions. We propose an efficient approach to address these properties via a Monte Carlo simulation, using ab initio-based effective interaction models. The temperature evolution of self- and Cu diffusion coefficients in α-iron are successfully predicted, particularly the diffusion acceleration around the Curie point, which requires a quantum treatment of spins. We point out a dominance of magnetic disorder over chemical effects on diffusion in the very dilute systems.

2.
Phys Rev Lett ; 120(10): 106101, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570319

RESUMO

Nonequilibrium chemical redistribution in open systems submitted to external forces, such as particle irradiation, leads to changes in the structural properties of the material, potentially driving the system to failure. Such redistribution is controlled by the complex interplay between the production of point defects, atomic transport rates, and the sink character of the microstructure. In this work, we analyze this interplay by means of a kinetic Monte Carlo (KMC) framework with an underlying atomistic model for the Fe-Cr model alloy to study the effect of ideal defect sinks on Cr concentration profiles, with a particular focus on the role of interface density. We observe that the amount of segregation decreases linearly with decreasing interface spacing. Within the framework of the thermodynamics of irreversible processes, a general analytical model is derived and assessed against the KMC simulations to elucidate the structure-property relationship of this system. Interestingly, in the kinetic regime where elimination of point defects at sinks is dominant over bulk recombination, the solute segregation does not directly depend on the dose rate but only on the density of sinks. This model provides new insight into the design of microstructures that mitigate chemical redistribution and improve radiation tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA