Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
ACS Appl Mater Interfaces ; 16(5): 5598-5612, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270979

RESUMO

Imaging plays a critical role in all stages of cancer care from early detection to diagnosis, prognosis, and therapy monitoring. Recently, photoacoustic imaging (PAI) has started to emerge into the clinical realm due to its high sensitivity and ability to penetrate tissues up to several centimeters deep. Herein, we encapsulated indocyanine green J (ICGJ) aggregate, one of the only FDA-approved organic exogenous contrast agents that absorbs in the near-infrared range, at high loadings up to ∼40% w/w within biodegradable polymersomes (ICGJ-Ps) composed of poly(lactide-co-glycolide-b-polyethylene glycol) (PLGA-b-PEG). The small Ps hydrodynamic diameter of 80 nm is advantageous for in vivo applications, while directional conjugation with epidermal growth factor receptor (EGFR) targeting cetuximab antibodies renders molecular specificity. Even when exposed to serum, the ∼11 nm-thick membrane of the Ps prevents dissociation of the encapsulated ICGJ for at least 48 h with a high ratio of ICGJ to monomeric ICG absorbances (i.e., I895/I780 ratio) of approximately 5.0 that enables generation of a strong NIR photoacoustic (PA) signal. The PA signal of polymersome-labeled breast cancer cells is proportional to the level of cellular EGFR expression, indicating the feasibility of molecular PAI with antibody-conjugated ICGJ-Ps. Furthermore, the labeled cells were successfully detected with PAI in highly turbid tissue-mimicking phantoms up to a depth of 5 mm with the PA signal proportional to the amount of cells. These data show the potential of molecular PAI with ICGJ-Ps for clinical applications such as tumor margin detection, evaluation of lymph nodes for the presence of micrometastasis, and laparoscopic imaging procedures.


Assuntos
Imunoconjugados , Técnicas Fotoacústicas , Verde de Indocianina/química , Meios de Contraste/química , Análise Espectral , Imagem Molecular , Receptores ErbB , Técnicas Fotoacústicas/métodos
2.
ACS Nano ; 18(3): 1865-1881, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38206058

RESUMO

Nanoparticle delivery to solid tumors is a prime challenge in nanomedicine. Here, we approach this challenge through the lens of biogeochemistry, the field that studies the flow of chemical elements within ecosystems as manipulated by living cellular organisms and their environments. We leverage biogeochemistry concepts related to gold cycling against pancreatic cancer, considering mammalian organisms as drivers for gold nanoparticle biosynthesis. Sequestration of gold nanoparticles within tumors has been demonstrated as an effective strategy to enhance radiotherapy; however, the desmoplasia of pancreatic cancer impedes nanoparticle delivery. Our strategy overcomes this barrier by applying an atomic-scale agent, ionic gold, for intratumoral gold nanoparticle biosynthesis. Our comprehensive studies showed the cancer-specific synthesis of gold nanoparticles from externally delivered gold ions in vitro and in a murine pancreatic cancer model in vivo; a substantial colocalization of gold nanoparticles (GNPs) with cancer cell nuclei in vitro and in vivo; a strong radiosensitization effect by the intracellularly synthesized GNPs; a uniform distribution of in situ synthesized GNPs throughout the tumor volume; a nearly 40-day total suppression of tumor growth in animal models of pancreatic cancer treated with a combination of gold ions and radiation that was also associated with a significantly higher median survival versus radiation alone (235 vs 102 days, respectively).


Assuntos
Nanopartículas Metálicas , Neoplasias Pancreáticas , Animais , Camundongos , Ouro/química , Ecossistema , Nanopartículas Metálicas/química , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Íons , Mamíferos
3.
Adv Sci (Weinh) ; 9(20): e2105957, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35508715

RESUMO

Gold nanoparticles (GNPs) have shown considerable potential in a vast number of biomedical applications. However, currently there are no clinically approved injectable GNP formulations. Conversely, gold salts have been used in the clinic for nearly a century. Further, there is evidence of GNP formation in patients treated with gold salts (i.e., chrysiasis). Recent reports evaluating this phenomenon in human cells and in murine models indicate that the use of gold ions for in situ formation of theranostic GNPs could greatly improve the delivery within dense biological tissues, increase efficiency of intracellular gold uptake, and specificity of GNP formation within cancer cells. These attributes in combination with safe clinical application of gold salts make this process a viable strategy for clinical translation. Here, the first summary of the current knowledge related to GNP biomineralization in mammalian cells is provided along with critical assessment of potential biomedical applications of this newly emergent field.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Biomineralização , Compostos de Ouro , Humanos , Mamíferos , Camundongos , Sais
4.
Med Phys ; 49(4): 2212-2219, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35195908

RESUMO

BACKGROUND: While microbubble contrast agents (MCAs) are commonly used in ultrasound (US), they are inherently limited to vascular targets due to their size. Alternatively, phase-changing nanodroplet contrast agents (PNCAs) can be delivered as nanoscale agents (i.e., small enough to extravasate), but when exposed to a US field of sufficient mechanical index (MI), they convert to MCAs, which can be visualized with high contrast using nonlinear US. PURPOSE: To investigate the effect of perfluorocarbon (PFC) core composition and presence of cholesterol in particle coatings on stability and image contrast generated from acoustic activation of PNCAs using high-frequency US suitable for clinical imaging. METHODS: PNCAs with varied core compositions (i.e., mixtures of perfluoropentane [C5] and/or perfluorohexane [C6]) and two coating formulations (i.e., with and without cholesterol) were characterized and investigated for thermal/temporal stability and postactivation, nonlinear US contrast in phantom and in vivo environments. Through hydrophone measurements and nonlinear numerical modeling, MI was estimated for pulse sequences used for PNCA activation. RESULTS: All PNCA compositions were characterized to have similar diameters (249-267 nm) and polydispersity (0.151-0.185) following fabrication. While PNCAs with majority C5 core composition showed higher levels of spontaneous signal (i.e., not due to US activation) in phantoms than C6-majority PNCAs, all compositions were stable during imaging experiments. When activating PNCAs with a 12.3-MHz US pulse (MI = 1.1), C6-core particles with cholesterol-free coatings (i.e., CF-C6-100 particles) generated a median contrast of 3.1, which was significantly higher (p < 0.001) than other formulations. Further, CF-C6-100 particles were activated in a murine model, generating US contrast ≥ $ \ge $ 3.4. CONCLUSION: C6-core PNCAs can provide high-contrast US imaging with minimal nonspecific activation in phantom and in vivo environments.


Assuntos
Meios de Contraste , Fluorocarbonos , Acústica , Animais , Camundongos , Microbolhas , Ultrassonografia/métodos
5.
Nat Commun ; 12(1): 5410, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518530

RESUMO

Photoacoustic (PA) imaging is a functional and molecular imaging technique capable of high sensitivity and spatiotemporal resolution at depth. Widespread use of PA imaging, however, is limited by currently available contrast agents, which either lack PA-signal-generation ability for deep imaging or their absorbance spectra overlap with hemoglobin, reducing sensitivity. Here we report on a PA contrast agent based on targeted liposomes loaded with J-aggregated indocyanine green (ICG) dye (i.e., PAtrace) that we synthesized, bioconjugated, and characterized to addresses these limitations. We then validated PAtrace in phantom, in vitro, and in vivo PA imaging environments for both spectral unmixing accuracy and targeting efficacy in a folate receptor alpha-positive ovarian cancer model. These study results show that PAtrace concurrently provides significantly improved contrast-agent quantification/sensitivity and SO2 estimation accuracy compared to monomeric ICG. PAtrace's performance attributes and composition of FDA-approved components make it a promising agent for future clinical molecular PA imaging.


Assuntos
Meios de Contraste/química , Verde de Indocianina/química , Lipossomos/química , Imagem Molecular/métodos , Nanopartículas/química , Técnicas Fotoacústicas/métodos , Células 3T3 , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Receptor 1 de Folato/química , Receptor 1 de Folato/metabolismo , Humanos , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão/métodos , Nanopartículas/ultraestrutura , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Imagens de Fantasmas , Transplante Heterólogo
6.
ACS Nano ; 15(6): 9495-9508, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34011152

RESUMO

Nanoparticles with ultrasmall sizes (less than 10 nm) offer many advantages in biomedical applications compared to their bigger counterparts, including better intratumoral distribution, improved pharmacokinetics (PK), and efficient body clearance. When functionalized with a biocompatible coating and a target-specific antibody, ultrasmall nanoparticles represent an attractive clinical translation platform. Although there is a tremendous body of work dedicated to PK and the biological effects of various nanoparticles, little is known about the fate of different components of functionalized nanoparticles in a biological environment such as in live cells. Here, we used luminescence properties of 5 nm gold nanoparticles (AuNPs) to study the intracellular trafficking and fate of the AuNPs functionalized with an organic layer consisting of a polyethylene glycol (PEG) coating and epidermal growth factor receptor (EGFR)-targeting antibody. We showed that intracellular uptake of the targeted 5 nm AuNPs results in a strong two-photon luminescence (TPL) that is characterized by broad emission and very short lifetimes compared to the fluorescence of the nanoparticle-conjugated fluorophore-tagged antibody, thereby allowing selective imaging of these components using TPL and two-photon excited fluorescence lifetime microscopy (2P-FLIM). Our results indicate that the nanoparticle's coating is detached from the particle's surface inside cells, leading to formation of nanoparticle clusters with a strong TPL. Furthermore, we observed an optically resolved spatial separation of the gold core and the antibody coating of the particles inside cells. We used data from two-photon microscopy, 2P-FLIM, electron microscopy, and in vitro assays to propose a model of interactions of functionalized 5 nm AuNPs with live cells.


Assuntos
Nanopartículas Metálicas , Neoplasias , Ouro , Cinética , Luminescência , Polietilenoglicóis
7.
Biomed Opt Express ; 11(11): 6659-6673, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282515

RESUMO

Excitation of dye-loaded perfluorocarbon nanoparticles (nanobombs) can generate highly localized axially propagating longitudinal shear waves (LSW) that can be used to quantify tissue mechanical properties without transversal scanning of the imaging beam. In this study, we used repetitive excitations of dodecafluoropentane (C5) and tetradecafluorohexane (C6) nanobombs by a nanosecond-pulsed laser to produce multiple LSWs from a single spot in a phantom. A 1.5 MHz Fourier-domain mode-locked laser in combination with a phase correction algorithm was used to perform elastography. Multiple nanobomb activations were also monitored by detecting photoacoustic signals. Our results demonstrate that C6 nanobombs can be used for repetitive generation of LSW from a single spot for the purpose of material elasticity assessment. This study opens new avenues for continuous quantification of tissue mechanical properties using single delivery of the nanoparticles.

8.
J Comput Chem ; 41(31): 2634-2640, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32930440

RESUMO

Designing peptide sequences that self-assemble into well-defined nanostructures can open a new venue for the development of novel drug carriers and molecular contrast agents. Current approaches are often based on a linear block-design of amphiphilic peptides where a hydrophilic peptide chain is terminated by a hydrophobic tail. Here, a new template for a self-assembling tetrapeptide (YXKX, Y = tyrosine, X = alkylated tyrosine, K = lysine) is proposed with two distinct sides relative to the peptide's backbone: alkylated hydrophobic residues on one side and hydrophilic residues on the other side. Using all-atom molecular dynamics simulations, the self-assembly pathway of the tetrapeptide is analyzed for two different concentrations. At both concentrations, tetrapeptides self-assembled into a nanosphere structure. The alkylated tyrosines initialize the self-assembly process via a strong hydrophobic effect and to reduce exposure to the aqueous solvent, they formed a hydrophobic core. The hydrophilic residues occupied the surface of the self-assembled nanosphere. Ordered arrangement of tetrapeptides within the nanosphere with the backbone hydrogen bonding led to a beta sheet formation. Alkyl chain length constrained the size and shape of the nanosphere. This study provides foundation for further exploration of self-assembling structures that are based on peptides with hydrophobic and hydrophilic moieties located on the opposite sides of a peptide backbone.


Assuntos
Oligopeptídeos/química , Alquilação , Sequência de Aminoácidos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Nanoestruturas/química , Multimerização Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Tirosina/química , Água/química
9.
Opt Lett ; 45(12): 3296, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538966

RESUMO

We present an erratum to correct an inadvertent error made during the calculations of the in-focus fluence of pulsed laser used to excite nanoparticles [Opt. Lett.44, 3162 (2019)OPLEDP0146-959210.1364/OL.44.003162] and to update the conclusion regarding laser safety limits achieved with this type of excitation.

10.
Phys Med Biol ; 65(21): 21RM02, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32380492

RESUMO

This roadmap outlines the potential roles of metallic nanoparticles (MNPs) in the field of radiation therapy. MNPs made up of a wide range of materials (from Titanium, Z = 22, to Bismuth, Z = 83) and a similarly wide spectrum of potential clinical applications, including diagnostic, therapeutic (radiation dose enhancers, hyperthermia inducers, drug delivery vehicles, vaccine adjuvants, photosensitizers, enhancers of immunotherapy) and theranostic (combining both diagnostic and therapeutic), are being fabricated and evaluated. This roadmap covers contributions from experts in these topics summarizing their view of the current status and challenges, as well as expected advancements in technology to address these challenges.


Assuntos
Nanopartículas Metálicas/uso terapêutico , Nanomedicina Teranóstica/métodos , Humanos , Hipertermia Induzida
11.
Chem Commun (Camb) ; 56(31): 4368, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32242585

RESUMO

Correction for 'Directed evolution of gold nanoparticle delivery to cells' by Na Li et al., Chem. Commun., 2010, 46, 392-394.

12.
ACS Appl Mater Interfaces ; 11(50): 46437-46450, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31804795

RESUMO

Clinical translation of photoacoustic imaging (PAI) has been limited by the lack of near-infrared (NIR) contrast agents with low toxicity required for regulatory approval. Herein, J aggregates of indocyanine green (ICG) with strong NIR absorbance were encapsulated at high loadings within small 77 nm polymersomes (nanocapsules) composed of poly(lactide-co-glycolide-b-poly(ethylene glycol)) (PLGA-b-PEG) bilayers, thus enabling PAI of of breast and ovarian cancer cells with high specificity and a sensitivity at the level of ∼100 total cells. All of the major components of the polymersomes are FDA approved and used in the clinic. During formation of polymersomes with a water-in-oil-in-water double emulsion process, loss of ICG from the ICG J aggregates was minimized by coating them with a layer of branched polyethylenimine and by providing excess "sacrificial" ICG to adsorb at the oil-water interfaces. The encapsulated J aggregates were protected against dissociation by the polymersome shell for 24 h in 100% fetal bovine serum, after which the polymersomes biodegraded and the J aggregates dissociated to ICG monomers.


Assuntos
Meios de Contraste/farmacologia , Verde de Indocianina/farmacologia , Imagem Molecular , Técnicas Fotoacústicas , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Meios de Contraste/química , Emulsões/química , Emulsões/farmacologia , Feminino , Humanos , Verde de Indocianina/química , Camundongos , Camundongos Nus , Nanocápsulas/química , Óleos/química , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Polietilenoglicóis/química , Poliglactina 910/química , Água/química
13.
Biomed Opt Express ; 10(7): 3301-3316, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31360600

RESUMO

Here, we present a new class of third harmonic generation (THG) imaging probes that can be activated with precise spatiotemporal control using non-linear excitation. These probes consist of lipid-coated perfluorocarbon nanodroplets with embedded visible chromophores. The droplets undergo phase transition from liquid to gas upon heating mediated by two-photon absorption of NIR light by the embedded dyes. Resulting microbubbles provide a sharp, local refractive index mismatch, which makes an excellent source of THG signal. Potential applications of these probes include activatable THG agents for biological imaging and "on-demand" delivery of various compounds under THG monitoring.

14.
Biomed Opt Express ; 10(7): 3472-3483, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31360601

RESUMO

Gold nanoparticles (AuNPs) below 10 nm in size can undergo renal clearance, which could facilitate their clinical translation. However, due to non-linear, direct relationship between their absorption and size, use of such "ultra-small" AuNPs as contrast agents for photoacoustic imaging (PAI) is challenging. This problem is complicated by the tendency of absorption for ultra-small AuNPs to be below the NIR range, which is optimal for in vivo imaging. Herein, we present 5-nm molecularly activated plasmonic nanosensors (MAPS) that produce a strong photoacoustic signal in labeled cancer cells in the NIR, demonstrating the feasibility of sensitive PAI with ultra-small AuNPs.

15.
Opt Lett ; 44(12): 3162-3165, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199406

RESUMO

Wave-based optical coherence elastography (OCE) is a rapidly emerging technique for elasticity assessment of tissues having high displacement sensitivity and simple implementation. However, most current noncontact wave excitation techniques are unable to target a specific tissue site in 3D and rely on transversal scanning of the imaging beam. Here, we demonstrate that dye-loaded perfluorocarbon nanoparticles (nanobombs) excited by a pulsed laser can produce localized axially propagating longitudinal shear waves while adhering to the laser safety limit. A phase-correction method was developed and implemented to perform sensitive nanobomb elastography using a ∼1.5 MHz Fourier domain mode-locking laser. The nanobomb activation was also monitored by detecting photoacoustic signals. The highly localized elastic waves detected by the nanobomb OCE suggest the possibility of high-resolution 3D elastographic imaging.

16.
IEEE Trans Med Imaging ; 38(2): 561-571, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30207951

RESUMO

As photoacoustic (PA) imaging makes its way into the clinic, the accuracy of PA-based metrics becomes increasingly important. To address this need, a method combining finite-element-based local fluence correction (LFC) with signal-to-noise-ratio (SNR) regularization was developed and validated to accurately estimate oxygen saturation (SO2) in tissue. With data from a Vevo LAZR system, performance of our LFC approach was assessed in ex vivo blood targets (37.6%-99.6% SO2) and in vivo rat arteries. Estimation error of absolute SO2 and change in SO2 reduced from 10.1% and 6.4%, respectively, without LFC to 2.8% and 2.0%, respectively, with LFC, while the accuracy of the LFC method was correlated with the number of wavelengths acquired. This paper demonstrates the need for an SNR-regularized LFC to accurately quantify SO2 with PA imaging.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Oxigênio/sangue , Técnicas Fotoacústicas/métodos , Animais , Análise de Elementos Finitos , Artéria Hepática/diagnóstico por imagem , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Masculino , Ratos , Razão Sinal-Ruído , Ultrassonografia/métodos
17.
Opt Lett ; 43(9): 2006-2009, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714732

RESUMO

Wave-based optical elastography is rapidly emerging as a powerful technique for quantifying tissue biomechanical properties due to its noninvasive nature and high displacement sensitivity. However, current approaches are limited in their ability to produce high-frequency waves and highly localized mechanical stress. In this Letter, we demonstrate that the rapid liquid-to-gas phase transition of dye-loaded perfluorocarbon nanodroplets ("nanobombs") initiated by a pulsed laser can produce highly localized, high-frequency, and broadband elastic waves. The waves were detected by an ultra-fast line-field low-coherence holography system. For comparison, we also excited waves using a focused micro-air-pulse. Results from tissue-mimicking phantoms showed that the nanobombs produced elastic waves with frequencies up to ∼9 kHz, which was much greater than the ∼2 kHz waves excited by the air-pulse. Consequently, the nanobombs enabled more accurate quantification of sample viscoelasticity. Combined with their potential for functionalization, the nanobombs show promise for accurate and highly specific noncontact all-optical elastography.


Assuntos
Carbocianinas/química , Módulo de Elasticidade , Técnicas de Imagem por Elasticidade/instrumentação , Fluorocarbonos/química , Imagens de Fantasmas , Tomografia de Coerência Óptica/instrumentação , Fenômenos Biomecânicos , Técnicas de Imagem por Elasticidade/métodos , Lasers de Estado Sólido , Microesferas , Estresse Mecânico , Tomografia de Coerência Óptica/métodos
18.
Langmuir ; 33(14): 3413-3426, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28277669

RESUMO

Reversible NIR-active nanoparticle clusters with controlled size from 20 to 100 nm were assembled from 5 nm gold nanoparticles (Au NP), with either citrate (CIT) or various binary ligands on the surface, by tuning the electrostatic repulsion and the hydrogen bonding via pH. The nanoclusters were bound together by vdW forces between the cores and the hydrogen bonds between the surface ligands and dissociated to primary nanoparticles over a period of 20 days at pH 5 and at pH 7. When high levels of citrate ligands were used on the primary particle surfaces, the large particle spacings in the nanoclusters led to only modest NIR extinction. However, a NIR extinction (E1000/525) ratio of up to ∼0.4 was obtained for nanoclusters with binary ligand mixtures composed of citrate and either cysteine (CYS), glutathione (GSH), or thioctic acid zwitterion (TAZ) while maintaining full reversibility to primary particles. The optimum ligand ratio for both an E1000/525 of ∼0.4 and full reversibility decreased with increasing length of the secondary ligand (1.5/1 for CYS/CIT, 0.75/1 for GSH/CIT, and 0.5/1 for TAZ/CIT) because a longer secondary ligand maintains a sufficient interparticle spacing required for dissociation more effectively. Interestingly, the zeta potential and the first-order rate constant for nanocluster dissociation were similar for all three systems at the optimum ligand ratios. After incubation in 10 mM GSH solution (intracellular concentration), only the TAZ/CIT primary nanoparticles were resistant to protein opsonization in 100% fetal bovine serum, as the bidentate binding and zwitterion tips of TAZ resisted GSH exchange and protein opsonization, respectively.

19.
J Circ Biomark ; 4: 11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28936247

RESUMO

Circulating tumour cells (CTCs) are important indicators of metastatic cancer and may provide critical information for individualized treatment. As CTCs are usually very rare, the techniques to obtain information from very small numbers of cells are crucial. Here, we propose a method to perform a single cell quantitative reverse transcription polymerase chain reaction (qPCR) analysis of rare tumour cells. We utilized a microfluidic immunomagnetic assay to separate cancer cells from blood. A combination of detailed immunofluorescence and laser microdissection enabled the precise selection of individual cells. Cancer cells that were spiked into blood were successfully separated and picked up for a single cell PCR analysis. The breast cancer cell lines MCF7, SKBR3 and MDAMB231 were tested with 10 different genes. The result of the single cell analysis matched the results from a few thousand cells. Some markers (e.g., ER, HER2) that are commonly used for cancer identification showed relatively large deviations in expression levels. However, others (e.g., GRB7) showed deviations that are small enough to supplement single cell disease profiling.

20.
Cancer Res ; 74(19): 5397-408, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25106426

RESUMO

Metastases rather than primary tumors are responsible for killing most patients with cancer. Cancer cells often invade regional lymph nodes (LN) before colonizing other parts of the body. However, due to the low sensitivity and specificity of current imaging methods to detect localized nodal spread, an invasive surgical procedure--sentinel LN biopsy--is generally used to identify metastatic cancer cells. Here, we introduce a new approach for more sensitive in vivo detection of LN micrometastases, based on the use of ultrasound-guided spectroscopic photoacoustic (sPA) imaging of molecularly activated plasmonic nanosensors (MAPS). Using a metastatic murine model of oral squamous cell carcinoma, we showed that MAPS targeted to the epidermal growth factor receptor shifted their optical absorption spectrum to the red-near-infrared region after specific interactions with nodal metastatic cells, enabling their noninvasive detection by sPA. Notably, LN metastases as small as 50 µm were detected at centimeter-depth range with high sensitivity and specificity. Large sPA signals appeared in metastatic LN within 30 minutes of MAPS injection, in support of the clinical utility of this method. Our findings offer a rapid and effective tool to noninvasively identify micrometastases as an alternate to sentinal node biopsy analysis.


Assuntos
Nanotecnologia , Metástase Neoplásica/diagnóstico , Técnicas Fotoacústicas , Biópsia de Linfonodo Sentinela , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA