Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 12: 600172, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192492

RESUMO

Intracerebral hemorrhage (ICH) is a common and severe neurological disorder and is associated with high rates of mortality and morbidity. ICH is associated with old age and underlying conditions such as hypertension and diabetes mellitus. The COVID-19 pandemic is associated with neurological symptoms and complications including ICH. For instance, the mechanisms by which COVID-19 may contribute to hemorrhagic stroke may include both depletion of angiotensin converting enzyme 2 (ACE2) receptor and overactive immune response. In this study, we herein report three patients (0.25%) out of 1200 admissions with COVID-19 to our center between 1 May and August 4, 2020, who developed ICH. In addition, we will briefly discuss the possible pathophysiological mechanisms of COVID-19 infection in patients with ICH.

2.
Biomedicines ; 8(11)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182708

RESUMO

Ocular-involving paraneoplastic syndromes present a wide variety of clinical symptoms. Understanding the background pathophysiological and immunopathological factors can help make a more refined differential diagnosis consistent with the signs and symptoms presented by patients. There are two main pathophysiology arms: (1) autoimmune pathomechanism, which is presented with cancer-associated retinopathy (CAR), melanoma-associated retinopathy (MAR), cancer-associated cone dysfunction (CACD), paraneoplastic vitelliform maculopathy (PVM), and paraneoplastic optic neuritis (PON), and (2) ectopic peptides, which is often caused by tumor-expressed growth factors (T-exGF) and presented with bilateral diffuse uveal melanocytic proliferation (BDUMP). Meticulous systematic analysis of patient symptoms is a critical diagnostic step, complemented by multimodal imaging, which includes fundus photography, optical coherent tomography, fundus autofluorescence, fundus fluorescein angiography, electrophysiological examination, and sometimes fundus indocyjanin green angiography if prescribed by the clinician. Assessment of the presence of circulating antibodies is required for diagnosis. Antiretinal autoantibodies are highly associated with visual paraneoplastic syndromes and may guide diagnosis by classifying clinical manifestations in addition to monitoring treatment.

3.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906638

RESUMO

In this review, we propose a holistic approach to understanding cancer as a metabolic disease. Our search for relevant studies in medical databases concludes that cancer cells do not evolve directly from normal healthy cells. We hypothesize that aberrant DNA damage accumulates over time-avoiding the natural DNA controls that otherwise repair or replace the rapidly replicating cells. DNA damage starts to accumulate in non-replicating cells, leading to senescence and aging. DNA damage is linked with genetic and epigenetic factors, but the development of cancer is favored by telomerase activity. Evidence indicates that telomere length is affected by chronic inflammations, alterations of mitochondrial DNA, and various environmental factors. Emotional stress also influences telomere length. Chronic inflammation can cause oxidative DNA damage. Oxidative stress, in turn, can trigger mitochondrial changes, which ultimately alter nuclear gene expression. This vicious cycle has led several scientists to view cancer as a metabolic disease. We have proposed complex personalized treatments that seek to correct multiple changes simultaneously using a psychological approach to reduce chronic stress, immune checkpoint therapy with reduced doses of chemo and radiotherapy, minimal surgical intervention, if any, and mitochondrial metabolic reprogramming protocols supplemented by intermittent fasting and personalized dietary plans without interfering with the other therapies.


Assuntos
Neoplasias/metabolismo , Homeostase do Telômero/fisiologia , Telômero/metabolismo , Divisão Celular , Senescência Celular/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , DNA Mitocondrial/genética , Saúde Holística , Humanos , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/terapia , Estresse Oxidativo , Medicina de Precisão/métodos , Telomerase/metabolismo , Telômero/genética , Homeostase do Telômero/genética
4.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992741

RESUMO

Exosomes, considered as cell debris or garbage bags, have been later characterized as nanometer-sized extracellular double-membrane lipid bilayer bio-vesicles secreted by the fusion of vesicular bodies with the plasma membrane. The constituents and the rate of exosomes formation differ in different pathophysiological conditions. Exosomes are also observed and studied in different parts of the eye, like the retina, cornea, aqueous, and vitreous humor. Tear fluid consists of exosomes that are shown to regulate various cellular processes. The role of exosomes in eye cancers, especially retinoblastoma (RB), is not well explored, although few studies point towards their presence. Retinoblastoma is an intraocular tumor that constitutes 3% of cases of cancer in children. Diagnosis of RB may require invasive procedures, which might lead to the spread of the disease to other parts. Due to this reason, better ways of diagnosis are being explored. Studies on the exosomes in RB tumors and serum might help designing better diagnostic approaches for RB. In this article, we reviewed studies on exosomes in the eye, with a special emphasis on RB. We also reviewed miRNAs expressed in RB tumor, serum, and cell lines and analyzed the targets of these miRNAs from the proteins identified in the RB tumor exosomes. hsa-miR-494 and hsa-miR-9, upregulated and downregulated, respectively in RB, have the maximum number of targets. Although oppositely regulated, they share the same targets in the proteins identified in RB tumor exosomes. Overall this review provides the up-to-date progress in the area of eye exosome research, with an emphasis on RB.


Assuntos
Exossomos/metabolismo , MicroRNAs/metabolismo , Retina/metabolismo , Neoplasias da Retina , Retinoblastoma , Linhagem Celular , Neoplasias Oculares/diagnóstico , Neoplasias Oculares/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Retina/patologia , Neoplasias da Retina/diagnóstico , Neoplasias da Retina/metabolismo , Retinoblastoma/diagnóstico , Retinoblastoma/metabolismo
5.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937836

RESUMO

Ischemic stroke is one of the leading causes of death worldwide. Clinical manifestations of stroke are long-lasting and causing economic burden on the patients and society. Current therapeutic modalities to treat ischemic stroke (IS) are unsatisfactory due to the intricate pathophysiology and poor functional recovery of brain cellular compartment. MicroRNAs (miRNA) are endogenously expressed small non-coding RNA molecules, which can act as translation inhibitors and play a pivotal role in the pathophysiology associated with IS. Moreover, miRNAs may be used as potential diagnostic and therapeutic tools in clinical practice; yet, the complete role of miRNAs is enigmatic during IS. In this review, we explored the role of miRNAs in the regulation of stroke risk factors viz., arterial hypertension, metabolic disorders, and atherosclerosis. Furthermore, the role of miRNAs were reviewed during IS pathogenesis accompanied by excitotoxicity, oxidative stress, inflammation, apoptosis, angiogenesis, neurogenesis, and Alzheimer's disease. The functional role of miRNAs is a double-edged sword effect in cerebral ischemia as they could modulate pathological mechanisms associated with risk factors of IS. miRNAs pertaining to IS pathogenesis could be potential biomarkers for stroke; they could help researchers to identify a particular stroke type and enable medical professionals to evaluate the severity of brain injury. Thus, ascertaining the role of miRNAs may be useful in deciphering their diagnostic role consequently it is plausible to envisage a suitable therapeutic modality against IS.


Assuntos
Isquemia Encefálica/diagnóstico , Isquemia Encefálica/metabolismo , AVC Isquêmico/diagnóstico , MicroRNAs/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , AVC Isquêmico/metabolismo
6.
Cent Nerv Syst Agents Med Chem ; 15(2): 99-108, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25909193

RESUMO

The chemical process initiated by QIAPI 1 has been deemed to be the most important biological reaction associated with human photosynthesis, and possibly neuroprotective effects under various inflammatory events. However, the detailed biological activities of QIAPI 1 as a melanin precursor are still unknown. In the present work, cytotoxicity test was done by MTT assay to determine cell viability of various cell lines (WI-38, A549, HS 683) like proliferation tests and its effect on cytokine production. Arsenic poisoning is an often-unrecognized cause of renal insufficiency. No prophylactic and/or therapeutic compounds have shown promising results against kidney diseases. The pathogenesis of Arsenic-induced nephropathy is not clear. Arsenic, as itself, does not degrade over time in the environment, and its accumulation may induce toxic effects. In this study, we also report the histological findings of the kidney in 3 groups of Wistar rats, a control group, a group exposed to arsenic in the water; and a group exposed to arsenic and treated with QIAPI 1 simultaneously. The findings of the current evidence indicates a potential therapeutic ability of QIAPI 1.


Assuntos
Intoxicação por Arsênico/tratamento farmacológico , Medicamentos sem Prescrição/uso terapêutico , Adulto , Animais , Intoxicação por Arsênico/sangue , Intoxicação por Arsênico/patologia , Linhagem Celular , Citocinas/biossíntese , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Rim/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Masculino , Melaninas/metabolismo , Pessoa de Meia-Idade , Tamanho do Órgão/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Baço/efeitos dos fármacos , Adulto Jovem
7.
Pharmaceuticals (Basel) ; 3(1): 158-187, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-27713247

RESUMO

Mitochondrial dysfunction may be a principal underlying event in aging, including age-associated brain degeneration. Mitochondria provide energy for basic metabolic processes. Their decay with age impairs cellular metabolism and leads to a decline of cellular function. Alzheimer disease (AD) and cerebrovascular accidents (CVAs) are two leading causes of age-related dementia. Increasing evidence strongly supports the theory that oxidative stress, largely due to reactive oxygen species (ROS), induces mitochondrial damage, which arises from chronic hypoperfusion and is primarily responsible for the pathogenesis that underlies both disease processes. Mitochondrial membrane potential, respiratory control ratios and cellular oxygen consumption decline with age and correlate with increased oxidant production. The sustained hypoperfusion and oxidative stress in brain tissues can stimulate the expression of nitric oxide synthases (NOSs) and brain endothelium probably increase the accumulation of oxidative stress products, which therefore contributes to blood brain barrier (BBB) breakdown and brain parenchymal cell damage. Determining the mechanisms behind these imbalances may provide crucial information in the development of new, more effective therapies for stroke and AD patients in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA