RESUMO
The Ataxia telangiectasia and Rad3-related (ATR) inhibitor ceralasertib in combination with the PD-L1 antibody durvalumab demonstrated encouraging clinical benefit in melanoma and lung cancer patients who progressed on immunotherapy. Here we show that modelling of intermittent ceralasertib treatment in mouse tumor models reveals CD8+ T-cell dependent antitumor activity, which is separate from the effects on tumor cells. Ceralasertib suppresses proliferating CD8+ T-cells on treatment which is rapidly reversed off-treatment. Ceralasertib causes up-regulation of type I interferon (IFNI) pathway in cancer patients and in tumor-bearing mice. IFNI is experimentally found to be a major mediator of antitumor activity of ceralasertib in combination with PD-L1 antibody. Improvement of T-cell function after ceralasertib treatment is linked to changes in myeloid cells in the tumor microenvironment. IFNI also promotes anti-proliferative effects of ceralasertib on tumor cells. Here, we report that broad immunomodulatory changes following intermittent ATR inhibition underpins the clinical therapeutic benefit and indicates its wider impact on antitumor immunity.
Assuntos
Linfócitos T CD8-Positivos , Indóis , Morfolinas , Neoplasias , Pirimidinas , Sulfonamidas , Humanos , Animais , Camundongos , Antígeno B7-H1 , Microambiente Tumoral , Linhagem Celular Tumoral , Imunoterapia , Modelos Animais de Doenças , Proteínas Mutadas de Ataxia TelangiectasiaRESUMO
Peripheral T-cell lymphoma (PTCL) represents a rare group of heterogeneous diseases in urgent need of effective treatments. A scarcity of disease-relevant preclinical models hinders research advances. Here, we isolated a novel mouse (m)PTCL by serially transplanting a lymphoma from a germinal center B-cell hyperplasia model (Cγ1-Cre Blimp1fl/fl ) through immune-competent mice. Lymphoma cells were identified as clonal TCRß+ T-helper cells expressing T-follicular helper markers. We also observed coincident B-cell activation and development of a de novo B-cell lymphoma in the model, reminiscent of B-cell activation/lymphomagenesis found in human PTCL. Molecular profiling linked the mPTCL to the high-risk "GATA3" subtype of PTCL, showing GATA3 and Th2 gene expression, PI3K/mTOR pathway enrichment, hyperactivated MYC, and genome instability. Exome sequencing identified a human-relevant oncogenic ß-catenin mutation possibly involved in T-cell lymphomagenesis. Prolonged treatment responses were achieved in vivo by targeting ATR in the DNA damage response (DDR), a result corroborated in PTCL cell lines. This work provides mechanistic insight into the molecular and immunological drivers of T-cell lymphomagenesis and proposes DDR inhibition as an effective and readily translatable therapy in PTCL.
Assuntos
Dano ao DNA , Fator de Transcrição GATA3 , Linfoma de Células T Periférico , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Fator de Transcrição GATA3/genética , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/imunologia , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
BACKGROUND: The Regulatory T cell (Treg) lineage is defined by the transcription factor FOXP3, which controls immune-suppressive gene expression profiles. Tregs are often recruited in high frequencies to the tumor microenvironment where they can suppress antitumor immunity. We hypothesized that pharmacological inhibition of FOXP3 by systemically delivered, unformulated constrained ethyl-modified antisense oligonucleotides could modulate the activity of Tregs and augment antitumor immunity providing therapeutic benefit in cancer models and potentially in man. METHODS: We have identified murine Foxp3 antisense oligonucleotides (ASOs) and clinical candidate human FOXP3 ASO AZD8701. Pharmacology and biological effects of FOXP3 inhibitors on Treg function and antitumor immunity were tested in cultured Tregs and mouse syngeneic tumor models. Experiments were controlled by vehicle and non-targeting control ASO groups as well as by use of multiple independent FOXP3 ASOs. Statistical significance of biological effects was evaluated by one or two-way analysis of variance with multiple comparisons. RESULTS: AZD8701 demonstrated a dose-dependent knockdown of FOXP3 in primary Tregs, reduction of suppressive function and efficient target downregulation in humanized mice at clinically relevant doses. Surrogate murine FOXP3 ASO, which efficiently downregulated Foxp3 messenger RNA and protein levels in primary Tregs, reduced Treg suppressive function in immune suppression assays in vitro. FOXP3 ASO promoted more than 70% reduction in FOXP3 levels in Tregs in vitro and in vivo, strongly modulated Treg effector molecules (eg, ICOS, CTLA-4, CD25 and 4-1BB), and augmented CD8+ T cell activation and produced antitumor activity in syngeneic tumor models. The combination of FOXP3 ASOs with immune checkpoint blockade further enhanced antitumor efficacy. CONCLUSIONS: Antisense inhibitors of FOXP3 offer a promising novel cancer immunotherapy approach. AZD8701 is being developed clinically as a first-in-class FOXP3 inhibitor for the treatment of cancer currently in Ph1a/b clinical trial (NCT04504669).
Assuntos
Neoplasias , Oligonucleotídeos Antissenso , Animais , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Terapia de Imunossupressão , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Linfócitos T Reguladores , Microambiente TumoralRESUMO
During positive selection at the transition from CD4+CD8+ double-positive (DP) to single-positive (SP) thymocyte, TCR signalling results in appropriate MHC restriction and signals for survival and progression. We show that the pioneer transcription factors Foxa1 and Foxa2 are required to regulate RNA splicing during positive selection of mouse T cells and that Foxa1 and Foxa2 have overlapping/compensatory roles. Conditional deletion of both Foxa1 and Foxa2 from DP thymocytes reduced positive selection and development of CD4SP, CD8SP and peripheral naïve CD4+ T cells. Foxa1 and Foxa2 regulated the expression of many genes encoding splicing factors and regulators, including Mbnl1, H1f0, Sf3b1, Hnrnpa1, Rnpc3, Prpf4b, Prpf40b and Snrpd3. Within the positively selecting CD69+DP cells, alternative RNA splicing was dysregulated in the double Foxa1/Foxa2 conditional knockout, leading to >850 differentially used exons. Many genes important for this stage of T-cell development (Ikzf1-3, Ptprc, Stat5a, Stat5b, Cd28, Tcf7) and splicing factors (Hnrnpab, Hnrnpa2b1, Hnrnpu, Hnrnpul1, Prpf8) showed multiple differentially used exons. Thus, Foxa1 and Foxa2 are required during positive selection to regulate alternative splicing of genes essential for T-cell development, and, by also regulating splicing of splicing factors, they exert widespread control of alternative splicing.
Assuntos
Processamento Alternativo/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/genética , Splicing de RNA/genética , Timócitos/fisiologia , Animais , Éxons/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Processamento de RNA/genética , Linfócitos T/fisiologia , Timo/fisiologiaRESUMO
Pre-T-cell receptor (TCR) signal transduction is required for developing thymocytes to differentiate from CD4-CD8- double-negative (DN) cell to CD4+CD8+ double-positive (DP) cell. Notch signalling is required for T-cell fate specification and must be maintained throughout ß-selection, but inappropriate Notch activation in DN4 and DP cells is oncogenic. Here, we show that pre-TCR signalling leads to increased expression of the transcriptional repressor Bcl6 and that Bcl6 is required for differentiation to DP. Conditional deletion of Bcl6 from thymocytes reduced pre-TCR-induced differentiation to DP cells, disrupted expansion and enrichment of intracellular TCRß+ cells within the DN population and increased DN4 cell death. Deletion also increased Notch1 activation and Notch-mediated transcription in the DP population. Thus, Bcl6 is required in thymocyte development for efficient differentiation from DN3 to DP and to attenuate Notch1 activation in DP cells. Given the importance of inappropriate NOTCH1 signalling in T-cell acute lymphoblastic leukaemia (T-ALL), and the involvement of BCL6 in other types of leukaemia, this study is important to our understanding of T-ALL.
Assuntos
Receptor Notch1/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Animais , Western Blotting , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/fisiologia , Citometria de Fluxo , Genótipo , Camundongos , Receptor Notch1/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
We report the first disclosure of IRAK3 degraders in the scientific literature. Taking advantage of an opportune byproduct obtained during our efforts to identify IRAK4 inhibitors, we identified ready-to-use, selective IRAK3 ligands in our compound collection with the required properties for conversion into proteolysis-targeting chimera (PROTAC) degraders. This work culminated with the discovery of PROTAC 23, which we demonstrated to be a potent and selective degrader of IRAK3 after 16 h in THP1 cells. 23 induced proteasome-dependent degradation of IRAK3 and required both CRBN and IRAK3 binding for activity. We conclude that PROTAC 23 constitutes an excellent in vitro tool with which to interrogate the biology of IRAK3.
Assuntos
Quinases Associadas a Receptores de Interleucina-1/metabolismo , Ftalimidas/farmacologia , Proteólise/efeitos dos fármacos , Pirróis/farmacologia , Triazinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Ligantes , Ftalimidas/síntese química , Pirróis/síntese química , Células THP-1 , Triazinas/síntese química , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Here we investigate the function of Hedgehog (Hh) signaling in thymic γδ T-cell maturation and subset differentiation. Analysis of Hh mutants showed that Hh signaling promotes γδ T-cell development in the thymus and influences γδ T-cell effector subset distribution. Hh-mediated transcription in thymic γδ cells increased γδ T-cell number, and promoted their maturation and increased the γδNKT subset, whereas inhibition of Hh-mediated transcription reduced the thymic γδ T-cell population and increased expression of many genes that are normally down-regulated during γδ T-cell maturation. These changes were also evident in spleen, where increased Hh signaling increased γδNKT cells, but reduced CD27-CD44+ and Vγ2+ populations. Systemic in vivo pharmacological Smoothened-inhibition reduced γδ T-cell and γδNKT cells in the thymus, and also reduced splenic γδ T-cell and γδNKT populations, indicating that Hh signaling also influences homeostasis of peripheral γδ T-cell populations. Taken together our data indicate that Sonic Hedgehog is an important determinant of γδ T-cell effector subset differentiation.
Assuntos
Proteínas Hedgehog/imunologia , Subpopulações de Linfócitos T/imunologia , Timo/imunologia , Animais , Diferenciação Celular , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor Smoothened/imunologia , Baço/imunologiaRESUMO
Hedgehog (Hh) proteins regulate development and tissue homeostasis, but their role in atopic dermatitis (AD) remains unknown. We found that on induction of mouse AD, Sonic Hedgehog (Shh) expression in skin, and Hh pathway action in skin T cells were increased. Shh signaling reduced AD pathology and the levels of Shh expression determined disease severity. Hh-mediated transcription in skin T cells in AD-induced mice increased Treg populations and their suppressive function through increased active transforming growth factor-ß (TGF-ß) in Tregs signaling to skin T effector populations to reduce disease progression and pathology. RNA sequencing of skin CD4+ T cells from AD-induced mice demonstrated that Hh signaling increased expression of immunoregulatory genes and reduced expression of inflammatory and chemokine genes. Addition of recombinant Shh to cultures of naive human CD4+ T cells in iTreg culture conditions increased FOXP3 expression. Our findings establish an important role for Shh upregulation in preventing AD, by increased Gli-driven Treg cell-mediated immune suppression, paving the way for a potential new therapeutic strategy.
Assuntos
Dermatite Atópica/imunologia , Proteínas Hedgehog/imunologia , Transdução de Sinais/imunologia , Pele/imunologia , Linfócitos T Reguladores/imunologia , Proteína Gli2 com Dedos de Zinco/imunologia , Animais , Dermatite Atópica/genética , Dermatite Atópica/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Regulação da Expressão Gênica/imunologia , Proteínas Hedgehog/genética , Camundongos , Camundongos Knockout , Transdução de Sinais/genética , Pele/patologia , Linfócitos T Reguladores/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Proteína Gli2 com Dedos de Zinco/genéticaRESUMO
The interferon-inducible transmembrane (Ifitm/Fragilis) genes encode homologous proteins that are induced by IFNs. Here, we show that IFITM proteins regulate murine CD4+ Th cell differentiation. Ifitm2 and Ifitm3 are expressed in wild-type (WT) CD4+ T cells. On activation, Ifitm3 was downregulated and Ifitm2 was upregulated. Resting Ifitm-family-deficient CD4+ T cells had higher expression of Th1-associated genes than WT and purified naive Ifitm-family-deficient CD4+ T cells differentiated more efficiently to Th1, whereas Th2 differentiation was inhibited. Ifitm-family-deficient mice, but not Ifitm3-deficient mice, were less susceptible than WT to induction of allergic airways disease, with a weaker Th2 response and less severe disease and lower Il4 but higher Ifng expression and IL-27 secretion. Thus, the Ifitm family is important in adaptive immunity, influencing Th1/Th2 polarization, and Th2 immunopathology.
Assuntos
Hipersensibilidade/imunologia , Inflamação/imunologia , Proteínas de Membrana/metabolismo , Sistema Respiratório/imunologia , Células Th1/imunologia , Células Th2/imunologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Interferon gama/metabolismo , Interleucina-27/metabolismo , Interleucina-4/metabolismo , Ativação Linfocitária/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Equilíbrio Th1-Th2/genéticaRESUMO
The Foxa1 and Foxa2 transcription factors are essential for mouse development. Here we show that they are expressed in thymic epithelial cells (TEC) where they regulate TEC development and function, with important consequences for T-cell development. TEC are essential for T-cell differentiation, lineage decisions and repertoire selection. Conditional deletion of Foxa1 and Foxa2 from murine TEC led to a smaller thymus with a greater proportion of TEC and a greater ratio of medullary to cortical TEC. Cell-surface MHCI expression was increased on cortical TEC in the conditional Foxa1Foxa2 knockout thymus, and MHCII expression was reduced on both cortical and medullary TEC populations. These changes in TEC differentiation and MHC expression led to a significant reduction in thymocyte numbers, reduced positive selection of CD4+CD8+ cells to the CD4 lineage, and increased CD8 cell differentiation. Conditional deletion of Foxa1 and Foxa2 from TEC also caused an increase in the medullary TEC population, and increased expression of Aire, but lower cell surface MHCII expression on Aire-expressing mTEC, and increased production of regulatory T-cells. Thus, Foxa1 and Foxa2 in TEC promote positive selection of CD4SP T-cells and modulate regulatory T-cell production and activity, of importance to autoimmunity.
Assuntos
Células Epiteliais/imunologia , Fator 3-alfa Nuclear de Hepatócito/imunologia , Fator 3-beta Nuclear de Hepatócito/imunologia , Linfócitos T Reguladores/imunologia , Timócitos/imunologia , Timo/imunologia , Animais , Autoimunidade , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Regulação da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/deficiência , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/deficiência , Fator 3-beta Nuclear de Hepatócito/genética , Ativação Linfocitária , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão , Transdução de Sinais , Linfócitos T Reguladores/citologia , Timócitos/citologia , Timo/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Proteína AIRERESUMO
Gli3 is a Hedgehog (Hh)-responsive transcription factor that can function as a transcriptional repressor or activator. We show that Gli3 activity in mouse thymic epithelial cells (TECs) promotes positive selection and differentiation from CD4+ CD8+ to CD4+ CD8- single-positive (SP4) cells in the fetal thymus and that Gli3 represses Shh Constitutive deletion of Gli3, and conditional deletion of Gli3 from TECs, reduced differentiation to SP4, whereas conditional deletion of Gli3 from thymocytes did not. Conditional deletion of Shh from TECs increased differentiation to SP4, and expression of Shh was upregulated in the Gli3-deficient thymus. Use of a transgenic Hh reporter showed that the Hh pathway was active in thymocytes, and increased in the Gli3-deficient fetal thymus. Neutralisation of endogenous Hh proteins in the Gli3-/- thymus restored SP4 differentiation, indicating that Gli3 in TECs promotes SP4 differentiation by repression of Shh Transcriptome analysis showed that Hh-mediated transcription was increased whereas TCR-mediated transcription was decreased in Gli3-/- thymocytes compared with wild type.
Assuntos
Proteínas Hedgehog/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Proteína Gli3 com Dedos de Zinco/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Feminino , Perfilação da Expressão Gênica , Proteínas Hedgehog/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Gravidez , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timócitos/imunologia , Timo/citologia , Timo/embriologia , Timo/metabolismo , Proteína Gli3 com Dedos de Zinco/deficiência , Proteína Gli3 com Dedos de Zinco/genéticaRESUMO
Before birth, B cells develop in the fetal liver (FL). In this study, we show that Gli3 activity in the FL stroma is required for B cell development. In the Gli3-deficient FL, B cell development was reduced at multiple stages, whereas the Sonic hedgehog (Hh [Shh])-deficient FL showed increased B cell development, and Gli3 functioned to repress Shh transcription. Use of a transgenic Hh-reporter mouse showed that Shh signals directly to developing B cells and that Hh pathway activation was increased in developing B cells from Gli3-deficient FLs. RNA sequencing confirmed that Hh-mediated transcription is increased in B-lineage cells from Gli3-deficient FL and showed that these cells expressed reduced levels of B-lineage transcription factors and B cell receptor (BCR)/pre-BCR-signaling genes. Expression of the master regulators of B cell development Ebf1 and Pax5 was reduced in developing B cells from Gli3-deficient FL but increased in Shh-deficient FL, and in vitro Shh treatment or neutralization reduced or increased their expression, respectively.
Assuntos
Linfócitos B/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Fatores de Transcrição Kruppel-Like/genética , Fígado/metabolismo , Proteínas do Tecido Nervoso/genética , Animais , Linhagem da Célula/genética , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , Fígado/embriologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator de Transcrição PAX5/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transativadores/genética , Proteína Gli3 com Dedos de ZincoRESUMO
Kif7 is a ciliary kinesin motor protein that regulates mammalian Hedgehog pathway activation through influencing structure of the primary cilium. Here we show that Kif7 is required for normal T-cell development, despite the fact that T-cells lack primary cilia. Analysis of Kif7-deficient thymus showed that Kif7-deficiency increases the early CD44+CD25+CD4-CD8- thymocyte progenitor population but reduces differentiation to CD4+CD8+ double positive (DP) cell. At the transition from DP to mature T-cell, Kif7-deficiency selectively delayed maturation to the CD8 lineage. Expression of CD5, which correlates with TCR signal strength, was reduced on DP and mature CD4 and CD8 cells, as a result of thymocyte-intrinsic Kif7-deficiency, and Kif7-deficient T-cells from radiation chimeras activated less efficiently when stimulated with anti-CD3 and anti-CD28 in vitro. Kif7-deficient thymocytes showed higher expression of the Hedgehog target gene Ptch1 than WT, but were less sensitive to treatment with recombinant Shh, and Kif7-deficient T-cell development was refractory to neutralisation of endogenous Hh proteins, indicating that Kif7-deficient thymocytes were unable to interpret changes in the Hedgehog signal. In addition, Kif7-deficiency reduced cell-surface MHCII expression on thymic epithelial cells.
Assuntos
Diferenciação Celular/genética , Células Epiteliais/metabolismo , Cinesinas/genética , Complexo Principal de Histocompatibilidade/genética , Timócitos/citologia , Timócitos/metabolismo , Timo/fisiologia , Animais , Biomarcadores , Expressão Gênica , Genótipo , Proteínas Hedgehog/metabolismo , Complexo Principal de Histocompatibilidade/imunologia , Camundongos , Camundongos Knockout , Fenótipo , Transdução de Sinais , Timócitos/imunologiaRESUMO
T cells develop in the thymus, which provides an essential environment for T cell fate specification, and for the differentiation of multipotent progenitor cells into major histocompatibility complex (MHC)-restricted, non-autoreactive T cells. Here we review the role of the Hedgehog signalling pathway in T cell development, thymic epithelial cell (TEC) development, and thymocyte-TEC cross-talk in the embryonic mouse thymus during the last week of gestation.
RESUMO
Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus.
Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas Hedgehog/metabolismo , Timo/citologia , Timo/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo , Timo/imunologiaRESUMO
Developing thymocytes require pre-TCR signalling to differentiate from CD4-CD8- double negative to CD4+CD8+ double positive cell. Here we followed the transcriptional response to pre-TCR signalling in a synchronised population of differentiating double negative thymocytes. This time series analysis revealed a complex transcriptional response, in which thousands of genes were up and down-regulated before changes in cell surface phenotype were detected. Genome-wide measurement of RNA degradation of individual genes showed great heterogeneity in the rate of degradation between different genes. We therefore used time course expression and degradation data and a genome wide transcriptional modelling (GWTM) strategy to model the transcriptional response of genes up-regulated on pre-TCR signal transduction. This analysis revealed five major temporally distinct transcriptional activities that up regulate transcription through time, whereas down-regulation of expression occurred in three waves. Our model thus placed known regulators in a temporal perspective, and in addition identified novel candidate regulators of thymocyte differentiation.
Assuntos
Diferenciação Celular , Modelos Genéticos , Precursores de Proteínas/genética , Receptores de Antígenos de Linfócitos T/genética , Timócitos/metabolismo , Transcrição Gênica , Animais , Células Cultivadas , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Precursores de Proteínas/imunologia , Precursores de Proteínas/metabolismo , RNA/genética , RNA/metabolismo , Estabilidade de RNA , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Timócitos/imunologia , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Different tissues contain diverse and dynamic cellular niches, providing distinct signals to tissue-resident or migratory infiltrating immune cells. Hedgehog (Hh) proteins are secreted inter-cellular signalling molecules, which are essential during development and are important in cancer, post-natal tissue homeostasis and repair. Hh signalling mediated by the Hh-responsive transcription factor Gli2 also has multiple roles in T-lymphocyte development and differentiation. Here, we investigate the function of Gli2 in T-cell signalling and activation. Gene transcription driven by the Gli2 transcriptional activator isoform (Gli2A) attenuated T-cell activation and proliferation following T-cell receptor (TCR) stimulation. Expression of Gli2A in T-cells altered gene expression profiles, impaired the TCR-induced Ca(2+) flux and nuclear expression of NFAT2, suppressed upregulation of molecules essential for activation, and attenuated signalling pathways upstream of the AP-1 and NFκB complexes, leading to reduced activation of these important transcription factors. Inhibition of physiological Hh-dependent transcription increased NFκB activity upon TCR ligation. These data are important for understanding the molecular mechanisms of immunomodulation, particularly in tissues where Hh proteins or other Gli-activating ligands such as TGFß are upregulated, including during inflammation, tissue damage and repair, and in tumour microenvironments.