Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(8): 11393-11404, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34537940

RESUMO

Decreasing carbon emissions by replacing Portland cement (PC) with supplementary cementitious materials (SCMs), such as low-grade limestone (LS) and calcined clays (CC), has tremendous potential for stabilization/solidification (S/S) of industrial hazardous waste primarily with heavy metals. Recently, a low-carbon-based cementitious binder, namely, limestone calcined clay cement (LC), has emerged as an alternative for S/S treatment of wastes. However, comprehensive comparison between LC and PC application in solidifying/stabilizing wastes has not been conducted. This study aims to investigate the S/S efficiency of Pb-Zn smelter residue (LZSR) comprising heavy metals lead (Pb), zinc (Zn), and cadmium (Cd) at higher concentrations. LZSR is treated with LC and PC for capturing strength and leaching toxicity. The test results indicate that low-grade CC and LS in the LC binder can promote the alkaline environment, and act as fillers in solidifying heavy metals. The toxicity characteristic leaching procedure leaching concentrations of untreated (UT) LZSR were 503 mg/kg, 1266 mg/kg, and 251 mg/kg for Pb, Zn, and Cd, respectively. After a 28-day curing, the leaching concentrations in LC-treated LZSR reduced to 4.33 mg/kg, 189.68 mg/kg, and 0.46 mg/kg, while the leaching concentrations of PC-treated LZSR reduced to 29 mg/kg, 338 mg/kg, and 6 mg/kg for Pb, Zn, and Cd, respectively. The maximum immobilization efficiencies for Pb, Zn, and Cd reached 85%, 99%, and 99%, respectively. Moreover, the insoluble phases for Pb, Zn, and Cd obtained from the sequential extraction test results were 63.5%, 72.1%, and 42.4% for LC-treated LZSR and 35.7%, 38%, and 43% for PC-treated LZSR with binder content of 8% binder and curing time of 28 days. Increasing curing time and binder content reduced leaching concentrations, and the underneath mechanisms were interpreted by XRD, SEM-EDS, and FTIR analyses. Overall, the results indicate that Pb, Zn, and Cd can be successfully immobilized using 8% LC binder by transforming soluble heavy metals to insoluble hydroxides and their complexes.


Assuntos
Metais Pesados , Zinco , Carbonato de Cálcio , Argila , Chumbo , Metais Pesados/análise
2.
Environ Sci Pollut Res Int ; 28(20): 24940-24971, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33770356

RESUMO

All over the globe, the generation of industrial waste has been increased due to the increasing demand for modern civilisation. In the developing countries like India, it is growing vigorously which eventually increases the production of vehicles and results in the more number of waste tyres. Despite the dumping such hazardous waste in landfills, stockpiling, and burning, their feasible utilisation in the modification of soil and concrete can be a good alternative option for their disposal. This paper enlightens the published work carried out by various researchers to enhance the mechanical properties of clayey soil using various forms of waste tyres. The effects of different forms of waste tyres on consistency limits, compaction characteristics, strength characteristics, compressibility characteristics, permeability and California-bearing ratio of cohesive soils have been reviewed. The review results show that the use of waste tyre products in ground improvement can be an economical solution for the construction industries and optimistic future as its disposal option. Still, further investigations and more research studies are required to consolidate the remarks drawn by the past researchers for its utilisation in the construction of highway/railway embankments and other field applications.


Assuntos
Eliminação de Resíduos , Resíduos , Resíduos Perigosos , Índia , Solo , Instalações de Eliminação de Resíduos
3.
Chemosphere ; 235: 308-315, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31260871

RESUMO

This study evaluates the potential use of a new limestone calcined clay cement (LC3) for stabilization/solidification of zinc contaminated soil. LC3 is a new ternary blend manufactured by the replacement of 50% cement clinker by locally available two supplementary cementitious materials (SCMs) - limestone and calcined clay. The incorporation of LC3 is evaluated on the soil spiked with 0.5% and 1% of Zinc (Zn) at curing times of 3, 7, 14, 28 and 56 days. pH, strength and leachability properties of the solidified/stabilised soil are measured for both mechanical and environmental conditions. Additionally, sequential extraction procedure (SEP), X-ray diffraction (XRD) analysis and scanning electron microscope (SEM) analysis are performed to elucidate the mechanisms of Zn immobilization in the soil. The results show that the leachable Zn concentrations in the stabilised soil are well below the corresponding hazardous waste management regulatory limit after the curing time of 14 days. The soil pH and unconfined compressive strength of the stabilised soil increase with curing time. The SEP results confirm that LC3 considerably reduces the acid soluble fraction (F1) and increase the residual fraction (F4). The XRD and SEM results indicate that formation of Tri-calcium Silicate 3CaO·SiO2, Portlandite Ca(OH)2, Ettringite Ca6Al2(SO4)3(OH)12.26 H2O and Wulfingite Zn(OH)2 are the primary mechanisms for the immobilization of Zn in the LC3 stabilised soil.


Assuntos
Carbonato de Cálcio/química , Argila/química , Poluentes do Solo/análise , Zinco/análise , Força Compressiva , Materiais de Construção , Resíduos Perigosos/análise , Minerais , Dióxido de Silício , Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA