Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(7): 101124, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37467722

RESUMO

Abnormal immune responses to the resident gut microbiome can drive inflammatory bowel disease (IBD). Here, we combine high-resolution, culture-based shotgun metagenomic sequencing and analysis with matched host transcriptomics across three intestinal sites (terminal ileum, cecum, rectum) from pediatric IBD (PIBD) patients (n = 58) and matched controls (n = 42) to investigate this relationship. Combining our site-specific approach with bacterial culturing, we establish a cohort-specific bacterial culture collection, comprising 6,620 isolates (170 distinct species, 32 putative novel), cultured from 286 mucosal biopsies. Phylogeny-based, clade-specific metagenomic analysis identifies key, functionally distinct Enterococcus clades associated with either IBD or health. Strain-specific in vitro validation demonstrates differences in cell cytotoxicity and inflammatory signaling in intestinal epithelial cells, consistent with the colonic mucosa-specific response measured in patients with IBD. This demonstrates the importance of strain-specific phenotypes and consideration of anatomical sites in exploring the dysregulated host-bacterial interactions in IBD.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/genética , Colo/patologia , Biópsia , Mucosa Intestinal/microbiologia , Células Epiteliais/patologia
2.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37079454

RESUMO

Globally, the anaerobic bacterium Clostridium perfringens causes severe disease in a wide array of hosts; however, C. perfringens strains are also carried asymptomatically. Accessory genes are responsible for much of the observed phenotypic variation and virulence within this species, with toxins frequently encoded on conjugative plasmids and many isolates carrying up to 10 plasmids. Despite this unusual biology, current genomic analyses have largely excluded isolates from healthy hosts or environmental sources. Accessory genomes, including plasmids, also have often been excluded from broader scale phylogenetic investigations. Here we interrogate a comprehensive collection of 464 C. perfringens genomes and identify the first putative non-conjugative enterotoxin (CPE)-encoding plasmids and a putative novel conjugative locus (Bcp) with sequence similarity to a locus reported from Clostridium botulinum. We sequenced and archived 102 new C. perfringens genomes, including those from rarely sequenced toxinotype B, C, D and E isolates. Long-read sequencing of 11 C. perfringens strains representing all toxinotypes (A-G) identified 55 plasmids from nine distinct plasmid groups. Interrogation of the 464 genomes in this collection identified 1045 plasmid-like contigs from the nine plasmid families, with a wide distribution across the C. perfringens isolates. Plasmids and plasmid diversity play an essential role in C. perfringens pathogenicity and broader biology. We have expanded the C. perfringens genome collection to include temporal, spatial and phenotypically diverse isolates including those carried asymptomatically in the gastrointestinal microbiome. This analysis has resulted in the identification of novel C. perfringens plasmids whilst providing a comprehensive understanding of species diversity.


Assuntos
Toxinas Bacterianas , Clostridium perfringens , Humanos , Toxinas Bacterianas/genética , Filogenia , Composição de Bases , Análise de Sequência de DNA , RNA Ribossômico 16S , Plasmídeos/genética
3.
Bioinformatics ; 38(20): 4814-4816, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36029242

RESUMO

SUMMARY: Shotgun metagenomic sequencing provides the capacity to understand microbial community structure and function at unprecedented resolution; however, the current analytical methods are constrained by a focus on taxonomic classifications that may obfuscate functional relationships. Here, we present expam, a tree-based, taxonomy agnostic tool for the identification of biologically relevant clades from shotgun metagenomic sequencing. AVAILABILITY AND IMPLEMENTATION: expam is an open-source Python application released under the GNU General Public Licence v3.0. expam installation instructions, source code and tutorials can be found at https://github.com/seansolari/expam. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenoma , Microbiota , Metagenômica/métodos , Microbiota/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA