RESUMO
Studying the prevalence of SARS-CoV-2 specific antibodies (seroprevalence) allows for assessing the impact of epidemic containment measures and vaccinations and estimating the number of infections regardless of viral testing. We assessed antibody-mediated immunity to SARS-CoV-2 induced by infections and vaccinations from April 2020 to December 2022 in Finland by measuring serum IgG to SARS-CoV-2 nucleoprotein (N-IgG) and spike glycoprotein from randomly selected 18-85-year-old subjects (n = 9794). N-IgG seroprevalence remained at <7% until the last quartile (Q) of 2021. After the emergence of the Omicron variant, N-IgG seroprevalence increased rapidly and was 31% in Q1/2022 and 54% in Q4/2022. Seroprevalence was highest in the youngest age groups from Q2/2022 onwards. We did not observe regional differences in seroprevalence in 2022. We estimated that 51% of the Finnish 18-85-year-old population had antibody-mediated hybrid immunity induced by a combination of vaccinations and infections by the end of 2022. In conclusion, major shifts in the COVID-19 pandemic and resulting population immunity could be observed by serological testing.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Finlândia/epidemiologia , Pandemias , Estudos Soroepidemiológicos , Anticorpos Antivirais , Imunoglobulina GRESUMO
Background: Previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection primes the immune system; thus individuals who have recovered from infection have enhanced immune responses to subsequent vaccination (hybrid immunity). However, it remains unclear how well hybrid immunity induced by severe or mild infection can cross-neutralize emerging variants. We aimed to compare the strength and breadth of antibody responses in vaccinated recovered and uninfected subjects. Methods: We measured spike-specific immunoglobulin (Ig)G and neutralizing antibodies (NAbs) from vaccinated subjects including 320 with hybrid immunity and 20 without previous infection. From 29 subjects with a previous severe or mild infection, we also measured NAb responses against Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529/BA.1) variants following vaccination. Results: A single vaccine dose induced 2-fold higher anti-spike IgG concentrations and up to 4-fold higher neutralizing potency of antibodies in subjects with a previous infection compared with vaccinated subjects without a previous infection. Hybrid immunity was more enhanced after a severe than a mild infection, with sequentially decreasing NAb titers against Alpha, Beta, Delta, and Omicron variants. We found similar IgG concentrations in subjects with a previous infection after 1 or 2 vaccine doses. Conclusions: Hybrid immunity induced strong IgG responses, particularly after severe infection. However, the NAb titers were low against heterologous variants, especially against Omicron.
RESUMO
Background: Household transmission studies offer the opportunity to assess both secondary attack rate (SAR) and persistence of SARS-CoV-2 antibodies over time. Methods: In Spring 2020, we invited confirmed COVID-19 cases and their household members to four visits, where we collected nasopharyngeal and serum samples over 28 days after index case onset. We calculated SAR based on the presence of SARS-CoV-2 neutralizing antibodies (NAb) and assessed the persistence of NAb and IgG antibodies (Ab) against SARS-CoV-2 spike glycoprotein and nucleoprotein. Results: SAR was 45% (39/87), including 35 symptomatic secondary cases. During the initial 28-day follow-up, 62% (80/129) of participants developed NAb. Of those that seroconverted, 90% (63/70), 85% (63/74), and 78% (45/58) still had NAb to early B-lineage SARS-CoV-2 3, 6, and 12 months after the onset of the index case. Anti-spike IgG Ab persisted in 100% (69/69), 97% (72/74), and 93% (55/59) of seroconverted participants after 3, 6, and 12 months, while anti-nucleoprotein IgG Ab levels waned faster, persisting in 99% (68/69), 78% (58/74), and 55% (39/71) of participants, respectively. Conclusion: Following detection of a COVID-19 case in a household, other members had a high risk of becoming infected. NAb to early B-lineage SARS-CoV-2 persisted for at least a year in most cases.
RESUMO
INTRODUCTION: Long-term care facilities (LTCF) residents are at high risk for severe coronavirus disease 2019 (COVID-19), and therefore, COVID-19 vaccinations were prioritized for residents and personnel in Finland at the beginning of 2021. METHODS: We investigated COVID-19 outbreaks in two LTCFs, where residents were once or twice vaccinated. After the outbreaks we measured immunoglobulin G (IgG) antibodies to severe acute respiratory syndrome coronavirus 2 spike glycoprotein, neutralizing antibody (NAb) titers, and cell-mediated immunity markers from residents and healthcare workers (HCWs). RESULTS: In LTFC-1, the outbreak was caused by an Alpha variant (B.1.1.7) and the attack rate (AR) among once vaccinated residents was 23%. In LTCF-2 the outbreak was caused by a Beta variant (B.1.351). Its AR was 47% although all residents had received their second dose 1 month before the outbreak. We observed that vaccination had induced lower IgG concentrations, NAb titers and cell-mediated immune responses in residents compared to HCWs. Only 1/8 residents had NAb to the Beta variant after two vaccine doses. CONCLUSIONS: The vaccinated elderly remain susceptible to breakthrough infections caused by Alpha and Beta variants. The weaker vaccine response in the elderly needs to be addressed in vaccination protocols, while new variants capable of evading vaccine-induced immunity continue to emerge.
Assuntos
COVID-19 , SARS-CoV-2 , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Imunoglobulina G , Incidência , Assistência de Longa Duração , SARS-CoV-2/genética , Glicoproteína da Espícula de CoronavírusRESUMO
The emergence of SARS-CoV-2 Omicron variant (B.1.1.529) with major spike protein mutations has raised concern over potential neutralization escape and breakthrough infections among vaccinated and previously SARS-CoV-2-infected subjects. We measured cross-protective antibodies against variants in health care workers (HCW, n = 20) and nursing home residents (n = 9) from samples collected at 1-2 months, following the booster (3rd) dose. We also assessed the antibody responses in subjects infected before the Omicron era (n = 38) with subsequent administration of a single mRNA vaccine dose. Following booster vaccination, HCWs had high IgG antibody concentrations to the spike protein and neutralizing antibodies (NAb) were detectable against all variants. IgG concentrations among the elderly remained lower, and some lacked NAbs against the Beta and Omicron variants. NAb titers were significantly reduced against Delta, Beta, and Omicron compared to WT virus regardless of age. Vaccination induced high IgG concentrations and variable titers of cross-reactive NAbs in previously infected subjects, whereas NAb titers against Omicron were barely detectable 1 month postinfection. High IgG concentrations with cross-protective neutralizing activity were detected after three Coronavirus Disease 2019 (COVID-19) vaccine doses in HCWs. However, lower NAb titers seen in the frail elderly suggest inadequate protection against Omicron breakthrough infections, yet protection against severe COVID-19 is expected.
Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Pessoal de Saúde , Humanos , Imunoglobulina G , RNA Mensageiro , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas Sintéticas , Vacinas de mRNARESUMO
Validation and standardization of accurate serological assays are crucial for the surveillance of the coronavirus disease 2019 (COVID-19) pandemic and population immunity. We describe the analytical and clinical performance of an in-house fluorescent multiplex immunoassay (FMIA) for simultaneous quantification of antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein and spike glycoprotein. Furthermore, we calibrated IgG-FMIA against World Health Organization (WHO) International Standard and compared FMIA results to an in-house enzyme immunoassay (EIA) and a microneutralization test (MNT). We also compared the MNT results of two laboratories. IgG-FMIA displayed 100% specificity and sensitivity for samples collected 13 to 150 days post-onset of symptoms (DPO). For IgA- and IgM-FMIA, 100% specificity and sensitivity were obtained for a shorter time window (13 to 36 and 13 to 28 DPO for IgA- and IgM-FMIA, respectively). FMIA and EIA results displayed moderate to strong correlation, but FMIA was overall more specific and sensitive. IgG-FMIA identified 100% of samples with neutralizing antibodies (NAbs). Anti-spike IgG concentrations correlated strongly (ρ = 0.77 to 0.84, P < 2.2 × 10-16) with NAb titers, and the two laboratories' NAb titers displayed a very strong correlation (ρ = 0.95, P < 2.2 × 10-16). Our results indicate good correlation and concordance of antibody concentrations measured with different types of in-house SARS-CoV-2 antibody assays. Calibration against the WHO international standard did not, however, improve the comparability of FMIA and EIA results. IMPORTANCE SARS-CoV-2 serological assays with excellent clinical performance are essential for reliable estimation of the persistence of immunity after infection or vaccination. In this paper we present a thoroughly validated SARS-CoV-2 serological assay with excellent clinical performance and good comparability to neutralizing antibody titers. Neutralization tests are still considered the gold standard for SARS-CoV-2 serological assays, but our assay can identify samples with neutralizing antibodies with 100% sensitivity and 96% specificity without the need for laborious and slow biosafety level 3 (BSL-3) facility-requiring analyses.
Assuntos
Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19/métodos , Imunofluorescência/métodos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Proteínas do Nucleocapsídeo/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Nucleoproteínas , Fosfoproteínas/imunologia , SARS-CoV-2 , Sensibilidade e EspecificidadeRESUMO
Most subjects develop antibodies to SARS-CoV-2 following infection. In order to estimate the duration of immunity induced by SARS-CoV-2 it is important to understand for how long antibodies persist after infection in humans. Here, we assessed the persistence of serum antibodies following WT SARS-CoV-2 infection at 8 and 13 months after diagnosis in 367 individuals. The SARS-CoV-2 spike IgG (S-IgG) and nucleoprotein IgG (N-IgG) concentrations and the proportion of subjects with neutralizing antibodies (NAb) were assessed. Moreover, the NAb titers among a smaller subset of participants (n = 78) against a WT virus (B) and variants of concern (VOCs): Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) were determined. We found that NAb against the WT virus persisted in 89% and S-IgG in 97% of subjects for at least 13 months after infection. Only 36% had N-IgG by 13 months. The mean S-IgG concentrations declined from 8 to 13 months by less than one third; N-IgG concentrations declined by two-thirds. Subjects with severe infection had markedly higher IgG and NAb levels and are expected to remain seropositive for longer. Significantly lower NAb titers against the variants compared to the WT virus, especially after a mild disease, suggests reduced protection against VOCs.
Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , COVID-19/imunologia , Imunoglobulina G/metabolismo , SARS-CoV-2/fisiologia , Adolescente , Adulto , Idoso , COVID-19/epidemiologia , Estudos de Coortes , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Finlândia/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Adulto JovemRESUMO
INTRODUCTION: Even with vaccines available since 2006, rotavirus continues to be a major cause of acute gastroenteritis globally in children under 5 years old. Finland introduced the rotavirus vaccine to its national vaccination programme in 2009. Since then hospitalizations due to gastroenteritis caused by rotavirus (RVGE) and of all causes (AGE) have been reduced significantly in young children. METHODS: We performed a retrospective analysis of data from register databases consisting of over 200 000 children aged 0.5-2 years. Children born before rotavirus vaccines were available (2002, 2003) and after the implementation of rotavirus vaccination programme (2014, 2015) were followed for episodes of acute infectious gastroenteritis. We calculated the incidences of hospital outpatient and inpatient episodes and used individual vaccination records to estimate the overall, total, direct and indirect vaccine effect (VE %). RESULTS: Among children born in 2014 and 2015, there was a 96% reduction in inpatient RVGE episodes and a 78% reduction in episodes of inpatient AGE compared to the pre-vaccination era, comprising the overall VE. Direct effectiveness was 96% and 53% for RVGE and AGE respectively. Herd effect i.e. indirect protection was estimated to be 67% against inpatient RVGE and 56% against inpatient AGE. Protection acquired by the vaccinated children when compared to pre vaccination era i.e. the total VE was 99% for inpatient RVGE and 79% for inpatient AGE. CONCLUSIONS: Although overall incidences for every disease type studied were reduced, rotavirus is still circulating with seasonality and there is a slight shift of disease towards the older age groups. Together with changes observed in the distribution of rotavirus genotypes, our results indicate that continuous monitoring is still necessary.