Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
2.
Curr Neurol Neurosci Rep ; 15(6): 29, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25877545

RESUMO

Dengue, a mosquito-borne flavivirus and fastest growing tropical disease in the world, has experienced an explosion of neurologic case reports and series in recent years. Now dengue is a frequent or leading cause of encephalitis in some endemic regions, is estimated to infect one in six tourists returning from the tropics, and has been proven to have local transmission within the continental USA. High documentation of neurologic disease in recent years reflects increases in overall cases, enhanced clinical awareness and advances in diagnostics. Neurological aspects of dengue virus, along with epidemiology, treatment, and vaccine progress, are presented.


Assuntos
Vírus da Dengue , Dengue/complicações , Doenças do Sistema Nervoso/etiologia , Humanos , Imunidade Heteróloga , Doenças do Sistema Nervoso/prevenção & controle , Doenças do Sistema Nervoso/terapia , Resultado do Tratamento
3.
Handb Clin Neurol ; 126: 175-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25410222

RESUMO

Even at a time when HIV/AIDS and immunosuppressive therapy have increased the number of individuals living with significant immunocompromise, diabetes mellitus (DM) remains a major comorbid disorder for several rare but potentially lethal infections, including rhino-orbital-cerebral mucormycosis and malignant external otitis. DM is also a commonly associated condition in patients with nontropical pyomyositis, pyogenic spinal infections, Listeria meningitis, and blastomycosis. As West Nile virus spread to and across North America over a decade ago, DM appeared in many series as a risk factor for death or neuroinvasive disease. More recently, in several large international population-based studies, DM was identified as a risk factor for herpes zoster. The relationships among infection, DM, and the nervous system are multidirectional. Viral infections have been implicated in the pathogenesis of type 1 and type 2 DM, while parasitic infections have been hypothesized to protect against autoimmune disorders, including type 1 DM. DM-related neurologic disease can predispose to systemic infection - polyneuropathy is the predominant risk factor for diabetic foot infection. Because prognosis for many neurologic infections depends on timely institution of antimicrobial and sometimes surgical therapy, neurologists caring for diabetic patients should be familiar with the clinical features of the neuroinfectious syndromes associated with DM.


Assuntos
Infecções do Sistema Nervoso Central/diagnóstico , Infecções do Sistema Nervoso Central/epidemiologia , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Animais , Anti-Infecciosos/uso terapêutico , Infecções do Sistema Nervoso Central/terapia , Complicações do Diabetes/diagnóstico , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/terapia , Diabetes Mellitus/terapia , Humanos
4.
Eur Neuropsychopharmacol ; 24(6): 974-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24630433

RESUMO

Cannabis abuse in adolescence is associated with a broad array of phenotypical consequences, including a higher risk for schizophrenia and other mental disturbances related to dopamine (DA) imbalances. The great variability of these sequelae likely depends on the key influence of diverse genetic vulnerability factors. Inbred rodent strains afford a highly informative tool to study the contribution of genetic determinants to the long-term effects of juvenile cannabinoid exposure. In this study, we analyzed the phenotypical impact of the synthetic cannabinoid agonist WIN 55,212-2 (WIN; 2mg/kg/day from postnatal day 35-48) in adolescent Lewis rats, an inbred strain exhibiting resistance to psychotomimetic effects of environmental manipulations. At the end of this treatment, WIN-injected animals displayed increased survival of new cells (mainly oligodendroglia precursors) in the striatum and prefrontal cortex (PFC), two key terminal fields of DAergic pathways. To test whether these changes may be associated with enduring behavioral alterations, we examined the consequences of adolescent WIN treatment in adulthood (postnatal days 60-70), with respect to DA levels and metabolism as well as multiple behavioral paradigms. Rats injected with WIN exhibited increased turnover, but not levels, of striatal DA. In addition, cannabinoid-treated animals displayed increases in acoustic startle latency and novel-object exploration; however, WIN treatment failed to induce overt deficits of sensorimotor gating and social interaction. These results indicate that, in Lewis rats, juvenile cannabinoid exposure leads to alterations in frontostriatal gliogenesis, as well as select behavioral alterations time-locked to high DAergic metabolism, but not overt schizophrenia-related deficits.


Assuntos
Canabinoides/efeitos adversos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/crescimento & desenvolvimento , Neuroglia/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/crescimento & desenvolvimento , Animais , Benzoxazinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Dopamina/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Morfolinas/farmacologia , Naftalenos/farmacologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neuroglia/patologia , Neuroglia/fisiologia , Fenótipo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Inibição Pré-Pulso/efeitos dos fármacos , Inibição Pré-Pulso/fisiologia , Ratos Endogâmicos Lew , Filtro Sensorial/efeitos dos fármacos , Filtro Sensorial/fisiologia , Comportamento Social
5.
Brain Res ; 1537: 273-82, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24021420

RESUMO

Cannabinoids are promising therapies to support neurogenesis and decelerate disease progression in neuroinflammatory and degenerative disorders. Whether neuroprotective effects of cannabinoids are sustainable during persistent viral infection of the CNS is not known. Using a rodent model of chronic viral encephalitis based on Borna Disease (BD) virus, in which 1 week treatment with the general cannabinoid WIN 55,212-2 has been shown to be neuroprotective (Solbrig et al., 2010), we examine longer term (2 week treatment) effects of a general (CB1 and CB2) cannabinoid receptor agonist WIN55,212-2 (1mg/kg ip twice per day) or a specific (CB2) cannabinoid receptor agonist HU-308 (5mg/kg ip once daily) on histopathology, measures of frontostriatal neurogenesis and gliogenesis, and viral load. We find that WIN and HU-308 differ in their ability to protect new BrdU(+) cells. The selective CB2 agonist HU increases BrdU(+) cells in prefrontal cortex (PFC), significantly increases BrdU(+) cells in striatum, differentially regulates polydendrocytes vs. microglia/macrophages, and reduces immune activation at a time WIN-treated rats appear tolerant to the anti-inflammatory effect of their cannabinoid treatment. WIN and HU had little direct viral effect in PFC and striatum, yet reduced viral signal in hippocampus. Thus, HU-308 action on CB2 receptors, receptors known to be renewed during microglia proliferation and action, is a nontolerizing mechanism of controlling CNS inflammation during viral encephalitis by reducing microglia activation, as well as partially limiting viral infection, and uses a nonpsychotropic cannabinoid agonist.


Assuntos
Benzoxazinas/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/uso terapêutico , Encefalite Viral/tratamento farmacológico , Morfolinas/farmacologia , Naftalenos/farmacologia , Animais , Canabinoides/farmacologia , Encefalite Viral/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Ratos , Ratos Endogâmicos Lew , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Receptores de Canabinoides/metabolismo
6.
Exp Neurol ; 226(1): 231-41, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20832403

RESUMO

Chronic CNS infection by several families of viruses can produce deficits in prefrontal cortex (PFC) and striatal function. Cannabinoid drugs have been long known for their anti-inflammatory properties and their ability to modulate adult neuro and gliogenesis. Therefore, we explored the effects of systemic administration of the cannabinoid agonist WIN55,212-2(WIN) on prefrontal cortex (PFC) and striatal cytogenesis in a viral model of CNS injury and inflammation based on Borna Disease (BD) virus encephalitis. Active BrdU(+) progenitor populations were significantly decreased 1 week after BrdU labeling in BD rats [p<0.001 compared to uninfected (NL) controls] while less than 5% of BrdU(+) cells colabeled for BDV protein. Systemic WIN (1mg/kg i.p. twice daily×7 days) increased the survival of BrdU(+) cells in striatum (p<0.001) and PFC of BD rats, with differential regulation of labeled oligodendroglia precursors vs microglia/macrophages. WIN increased the percentage of BrdU(+) oligodendrocyte precursor cells and decreased BrdU(+) ED-1-labeled phagocytic cells, without producing pro- or antiviral effects. BDV infection decreased the levels of the endocannabinoid anandamide (AEA) in striatum (p<0.05 compared to NL rats), whereas 2-AG levels were unchanged. Our findings indicate that: 1) viral infection is accompanied by alterations of AEA transmission in the striatum, but new cell protection by WIN appears independent of its effect on endocannabinoid levels; and 2) chronic WIN treatment alters the gliogenic cascades associated with CNS injury, promoting oligodendrocyte survival. Limiting reactive gliogenesis and macrophage activity in favor of oliogodendroglia development has significance for demyelinating diseases. Moreover, the ability of cannabinoids to promote the development of biologically supportive or symbiotic oligodendroglia may generalize to other microglia-driven neurodegenerative syndromes including NeuroAIDS and diseases of aging.


Assuntos
Canabinoides/farmacologia , Encefalite Viral/patologia , Neurogênese/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Animais , Antimetabólitos , Benzoxazinas/farmacologia , Vírus da Doença de Borna/metabolismo , Bromodesoxiuridina , Moduladores de Receptores de Canabinoides/metabolismo , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Macrófagos/efeitos dos fármacos , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Ratos , Ratos Endogâmicos Lew , Células-Tronco/efeitos dos fármacos
8.
Interdiscip Perspect Infect Dis ; 2010: 709791, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20204069

RESUMO

Borna disease (BD), caused by the neurotropic RNA virus, Borna Disease virus, is an affliction ranging from asymptomatic to fatal meningoencephalitis across naturally and experimentally infected warmblooded (mammalian and bird) species. More than 100 years after the first clinical descriptions of Borna disease in horses and studies beginning in the 1980's linking Borna disease virus to human neuropsychiatric diseases, experimentally infected rodents have been used as models for examining behavioral, neuropharmacological, and neurochemical responses to viral challenge at different stages of life. These studies have contributed to understanding the role of CNS viral injury in vulnerability to behavioral, developmental, epileptic, and neurodegenerative diseases and aided evaluation of the proposed and still controversial links to human disease.

10.
J Neurovirol ; 14(3): 252-60, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18569459

RESUMO

A growing number of environmental and pharmacologic manipulations have been shown to influence adult neurogenesis. Borna disease virus (BDV) in rats causes cortical and subcortical infection with extrapyramidal motor symptoms, and hippocampal infection suppresses neurogenesis. Given the known effects of cannabinoids in promoting neural progenitor cell survival, the authors examined in vivo effects of chronic BDV infection in rats on BrdU-positive progenitor cells in striatum, together with neuroprotective actions of cannabinoids. Birth and survival of BrdU-positive progenitor cells in striatum of BDV-infected rats treated with a general cannabinoid agonist (WIN 55,212 1 mg/kg i.p. b.i.d. x 7 days) were examined, as well as anti-inflammatory, antiviral, and nutritional effects of cannabinoids. Cannabinoid treatment protected BrdU-positive progenitor cells in striatum that were susceptible to virus-induced injury (p < .01) through suppression of microglia activation (p < .001). As a consequence of their anti-inflammatory actions and support of neural progenitor cell survival, cannabinoids may be adjunctive treatment for encephalitides with microglial inflammation and neurodegeneration.


Assuntos
Benzoxazinas/administração & dosagem , Benzoxazinas/farmacologia , Doença de Borna/tratamento farmacológico , Vírus da Doença de Borna , Canabinoides , Corpo Estriado/efeitos dos fármacos , Morfolinas/administração & dosagem , Morfolinas/farmacologia , Naftalenos/administração & dosagem , Naftalenos/farmacologia , Neurônios/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Anti-Inflamatórios , Doença de Borna/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doença Crônica , Corpo Estriado/citologia , Esquema de Medicação , Inflamação/tratamento farmacológico , Inflamação/patologia , Injeções Intraperitoneais , Masculino , Microglia/citologia , Neurônios/fisiologia , Ratos , Ratos Endogâmicos Lew , Células-Tronco/fisiologia
11.
Neuroimaging Clin N Am ; 18(1): 1-18; vii, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18319152

RESUMO

Diagnosis of CNS viral infections is challenging; yet, significant progress in laboratory diagnosis of CNS infections has come through applications of serology and polymerase chain reaction (PCR) to CSF and tissues. Advances in molecular and laboratory techniques, together with neuroimaging, epidemiologic, and surveillance efforts, are yielding greater success in CNS viral diagnosis and treatment.


Assuntos
Viroses do Sistema Nervoso Central/diagnóstico , Diagnóstico por Imagem , Eletrodiagnóstico , Humanos , Reação em Cadeia da Polimerase
13.
Neurocrit Care ; 9(1): 74-82, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18097641

RESUMO

BACKGROUND: The California Encephalitis Project (CEP) is a program designed to determine causes of encephalitis. We sought to determine whether there are any distinguishing characteristics of patients with encephalitis who develop refractory status epilepticus from those who do not. METHODS: Data from all patients in the CEP were retrospectively reviewed and analyzed. Diagnostic testing was performed for a panel of infectious agents and medical information collected using a standardized form. Encephalitis patients were subdivided into three categories: (i) patients with status epilepticus unresponsive to standard antiepileptic therapy who required general anesthetic coma for management (Group I), (ii) patients with seizures or status epilepticus responsive to standard antiepileptic therapy (Group II), and (iii) patients without seizures (Group III). Supplementary information was requested on Group I patients. RESULTS: Of 1,151 patients; 43 (4%) were classified as Group I, 459 (40%) as Group II, and 649 (56%) as Group III. Compared to Groups II and III, Group I patients were younger (median age = 10.0 years), more likely to have fever (93%), prodromal respiratory (57%) or gastrointestinal illness (64%), and less likely to have CSF pleocytosis (47%) or abnormal neuroimaging (16%). A causative infectious agent was verified in three of the Group I patients; and a putative agent in nine others. Supplementary information on Group I revealed that 28% died within 2 years and 56% were neurologically impaired or undergoing rehabilitation. CONCLUSIONS: Encephalitis and refractory status epilepticus occur most commonly in the pediatric age group, an infectious etiology is usually not established, and outcomes are generally poor.


Assuntos
Anticonvulsivantes/uso terapêutico , Encefalite/epidemiologia , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/epidemiologia , Distribuição por Idade , Criança , Pré-Escolar , Resistência a Medicamentos , Encefalite/complicações , Feminino , Humanos , Lactente , Masculino , Anamnese , Análise Multivariada , Prognóstico , Estado Epiléptico/etiologia
14.
Psychiatry Res ; 151(1-2): 139-43, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17395273

RESUMO

Postictal and interictal psychoses are relatively common complicating factors in the clinical course of epilepsy, yet their neurobiological substrates are poorly understood. Recent evidence shows that kappa opioid receptor (KOR) activation elicits anticonvulsant and psychotomimetic effects. In view of this background, here we introduce the hypothesis that epilepsy-related psychoses may partially result from excessive hippocampal dynorphin release and kappa opioid receptor overstimulation aimed at seizure control.


Assuntos
Anticonvulsivantes/metabolismo , Dinorfinas/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Transtornos Psicóticos/fisiopatologia , Receptores Opioides kappa/fisiologia , Animais , Epilepsia do Lobo Temporal/complicações , Humanos , Excitação Neurológica/fisiologia
15.
Eur J Pharmacol ; 555(1): 23-9, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17126318

RESUMO

Opioid systems in hippocampus regulate excitability and kappa opioids have a role in anticonvulsant protection, but their mechanisms of action are incompletely understood. We examined the ability of opioid and nonopioid agents with overlapping ionic mechanisms and actions similar to kappa opioid agonists, to block seizures in rat models of encephalitis due to Borna Disease virus and Herpes Simplex Virus Type-1. Naltrindole, a delta antagonist and thus a kappa opioid sparing agent, (10 mg/kg s.c.) blocked spontaneous and naloxone (opioid antagonist)-induced seizures in the models, but produced somatic signs similar to opioid withdrawal. Given that delta antagonists as well as kappa opioid agonists in hippocampus enhance potassium M currents (I(M)), we tested the effect of the I(M) augmenter flupirtine. Flupirtine (20 mg/kg i.p.) prevented seizures in Borna and herpes infected rats, without signs of withdrawal, hypotonia or sedation. The results support the efficacy of opioid and nonopioid drugs in modulating naloxone-induced seizures in critical illness due to viral encephalitis and by analogy, opioid withdrawal seizures.


Assuntos
Aminopiridinas/farmacologia , Analgésicos/farmacologia , Anticonvulsivantes/farmacologia , Encefalite Viral/tratamento farmacológico , Naltrexona/análogos & derivados , Antagonistas de Entorpecentes/farmacologia , Animais , Doença de Borna/tratamento farmacológico , Encefalite Viral/fisiopatologia , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1 , Masculino , Naloxona , Naltrexona/farmacologia , Potássio/fisiologia , Ratos , Ratos Endogâmicos Lew , Receptores Opioides delta/antagonistas & inibidores , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/prevenção & controle
16.
Neurobiol Dis ; 23(3): 612-20, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16843674

RESUMO

Up to 89% of patients with herpes simplex virus type-1 (HSV-1) encephalitis can have seizures. Possibly, viruses are environmental triggers for seizures in genetically vulnerable individuals. Inherited dynorphin promoter polymorphisms are associated with temporal lobe epilepsy and febrile seizures in man. In animals, the dynorphin system in the hippocampus regulates excitability. The hypothesis that reduced dynorphin expression in dentate gyrus of hippocampus due to HSV-1 infection leads to epileptic responses was tested in a rat model of HSV-1 encephalitis using EEG recording, histopathological and neuropharmacologic probes. HSV-1 infection causes loss of dynorphin A-like immunoreactivity in hippocampus, an effect independent of direct viral interference and cell loss. A kappa opioid receptor agonist U50488 effectively blocks ictal activity, linking absence of dynorphin to propensity for epileptic activity. These findings show a vulnerability of hippocampal dynorphin during infection, suggesting a neurochemical basis for seizures that may be generalizable to other encephalitic viruses.


Assuntos
Dinorfinas/deficiência , Encefalite por Herpes Simples/complicações , Epilepsia/metabolismo , Epilepsia/virologia , Predisposição Genética para Doença/genética , Herpesvirus Humano 1/metabolismo , Potenciais de Ação/fisiologia , Analgésicos Opioides/farmacologia , Animais , Giro Denteado/metabolismo , Giro Denteado/fisiopatologia , Giro Denteado/virologia , Modelos Animais de Doenças , Regulação para Baixo/genética , Dinorfinas/genética , Eletroencefalografia , Epilepsia/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos Lew , Receptores Opioides kappa/efeitos dos fármacos , Receptores Opioides kappa/metabolismo , Fatores de Risco
17.
Brain ; 129(Pt 3): 642-54, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16399805

RESUMO

Epilepsy remains a major medical problem of unknown aetiology. Potentially, viruses can be environmental triggers for development of seizures in genetically vulnerable individuals. An estimated half of encephalitis patients experience seizures and approximately 4% develop status epilepticus. Epilepsy vulnerability has been associated with a dynorphin promoter region polymorphism or low dynorphin expression genotype, in man. In animals, the dynorphin system in the hippocampus is known to regulate excitability. The present study was designed to test the hypothesis that reduced dynorphin expression in the dentate gyrus of hippocampus due to periadolescent virus exposure leads to epileptic responses. Encephalitis produced by the neurotropic Borna disease virus in the rat caused epileptic responses and dynorphin to disappear via dentate granule cell loss, failed neurogenesis and poor survival of new neurons. Kappa opioid (dynorphin) agonists prevented the behavioural and electroencephalographic seizures produced by convulsant compounds, and these effects were associated with an absence of dynorphin from the dentate gyrus granule cell layer and upregulation of enkephalin in CA1 interneurons, thus reproducing a neurochemical marker of epilepsy, namely low dynorphin tone. A key role for kappa opioids in anticonvulsant protection provides a framework for exploration of viral and other insults that increase seizure vulnerability and may provide insights into potential interventions for treatment of epilepsy.


Assuntos
Doença de Borna/complicações , Dinorfinas/fisiologia , Encefalite Viral/complicações , Convulsões/virologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/uso terapêutico , Animais , Northern Blotting , Doença de Borna/metabolismo , Doença de Borna/patologia , Sobrevivência Celular , Modelos Animais de Doenças , Dinorfinas/metabolismo , Eletroencefalografia , Encefalite Viral/metabolismo , Encefalite Viral/patologia , Encefalinas/metabolismo , Hipocampo/metabolismo , Masculino , Naloxona , Antagonistas de Entorpecentes , Neurônios/patologia , Ratos , Ratos Endogâmicos Lew , Receptores Opioides kappa/agonistas , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/prevenção & controle
18.
Exp Neurol ; 194(2): 355-62, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16022863

RESUMO

Dyskinesias and seizures are both medically refractory disorders for which cannabinoid-based treatments have shown early promise as primary or adjunctive therapy. Using the Borna disease (BD) virus rat, an animal model of viral encephalopathy with spontaneous hyperkinetic movements and seizure susceptibility, we identified a key role for endocannabinoids in the maintenance of a balanced tone of activity in extrapyramidal and limbic circuits. BD rats showed significant elevations of the endocannabinoid anandamide in subthalamic nucleus, a relay nucleus compromised in hyperkinetic disorders. While direct and indirect cannabinoid agonists had limited motor effects in BD rats, abrupt reductions of endocannabinoid tone by the CB1 antagonist SR141716A (0.3 mg/kg, i.p.) caused seizures characterized by myoclonic jerks time-locked to periodic spike/sharp wave discharges on hippocampal electroencephalography. The general opiate antagonist naloxone (NLX) (1 mg/kg, s.c.), another pharmacologic treatment with potential efficacy in dyskinesias or L-DOPA motor complications, produced similar seizures. No changes in anandamide levels in hippocampus and amygdala were found in convulsing NLX-treated BD rats. In contrast, NLX significantly increased anandamide levels in the same areas of normal uninfected animals, possibly protecting against seizures. Pretreatment with the anandamide transport blocker AM404 (20 mg/kg, i.p.) prevented NLX-induced seizures. These findings are consistent with an anticonvulsant role for endocannabinoids, counteracting aberrant firing produced by convulsive agents, and with a functional or reciprocal relation between opioid and cannabinoid tone with respect to limbic convulsive phenomena.


Assuntos
Doença de Borna/tratamento farmacológico , Moduladores de Receptores de Canabinoides/farmacologia , Endocanabinoides , Transtornos dos Movimentos/tratamento farmacológico , Convulsões/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/fisiopatologia , Gânglios da Base/virologia , Doença de Borna/fisiopatologia , Doença de Borna/virologia , Moduladores de Receptores de Canabinoides/uso terapêutico , Convulsivantes/antagonistas & inibidores , Modelos Animais de Doenças , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiopatologia , Sistema Límbico/virologia , Masculino , Transtornos dos Movimentos/fisiopatologia , Transtornos dos Movimentos/virologia , Naloxona/antagonistas & inibidores , Antagonistas de Entorpecentes/farmacologia , Piperidinas/antagonistas & inibidores , Alcamidas Poli-Insaturadas , Pirazóis/antagonistas & inibidores , Ratos , Ratos Endogâmicos Lew , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto , Convulsões/fisiopatologia , Convulsões/virologia
19.
Trends Pharmacol Sci ; 25(2): 98-104, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15102496

RESUMO

Epilepsy is a significant health problem. Despite the widespread use of both classic and newer pharmacological agents that target ion channels, amino acid transmission or receptors, there are numerous examples of mono- or polytherapy being ineffective. Seizures that are secondary to CNS infections are among the most refractory medically, and thus insult-specific agents are desirable. Recently, the study of the neuropharmacological actions of dynorphin in CNS viral injury has yielded new insights into epileptogenesis and epilepsy treatment. The opioid neuropeptide dynorphin modulates neuronal excitability in vitro in hippocampal slices and potentiates endogenous anti-ictal (i.e. protective) processes in animal models and humans. This work has renewed interest in the role of dysregulation of dynorphin in the pathogenesis of refractory seizures, including encephalitic seizures. The important role of dynorphin in epilepsy is also supported by new models of symptomatic epilepsies based on viral-induced seizures.


Assuntos
Doenças do Sistema Nervoso Central/complicações , Dinorfinas/fisiologia , Epilepsia , Hipocampo/fisiologia , Convulsões , Animais , Doenças do Sistema Nervoso Central/virologia , Modelos Animais de Doenças , Dinorfinas/efeitos dos fármacos , Dinorfinas/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Epilepsia/fisiopatologia , Hipocampo/metabolismo , Humanos , Ratos , Convulsões/tratamento farmacológico , Convulsões/etiologia , Convulsões/virologia
20.
Pharmacol Biochem Behav ; 74(4): 777-87, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12667891

RESUMO

Borna Disease Virus (BDV) is a neurotropic RNA virus that is worldwide in distribution, causing movement and behavior disorders in a wide range of animal species. BDV has also been reported to be associated with neuropsychiatric diseases of humans by serologic study and by recovery of nucleic acid or virus from blood or brain. Natural infections of horses and sheep produce encephalitis with erratic excited behaviors, hyperkinetic movement or gait abnormalities; naturally infected cats have ataxic "staggering disease." Experimentally infected primates develop hyperactivity, aggression, disinhibition, then apathy; prosimians (lower primates) have hyperactivity, circadian disruption, abnormal social and dominance behaviors, and postural disorders. However, the neuropharmacological determinants of BD phenotypes in laboratory and natural hosts are incompletely understood. Here we review how experimentally infected rodents have provided models for examining behavioral, pharmacologic, and biochemical responses to viral challenge, and how rodents experimentally infected as neonates or as adolescents are providing models for examining age-specific neuropharmacological adaptations to viral injury.


Assuntos
Doença de Borna/virologia , Vírus da Doença de Borna/patogenicidade , Viroses do Sistema Nervoso Central/virologia , Modelos Animais de Doenças , Animais , Doença de Borna/induzido quimicamente , Doença de Borna/tratamento farmacológico , Doença de Borna/fisiopatologia , Viroses do Sistema Nervoso Central/induzido quimicamente , Viroses do Sistema Nervoso Central/tratamento farmacológico , Viroses do Sistema Nervoso Central/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA