Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Res Microb Sci ; 3: 100099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35059676

RESUMO

Antimicrobial resistant (AMR) bacteria are emerging and spreading globally, threatening our ability to treat common infectious diseases. The development of new classes of antibiotics able to kill or inhibit the growth of such AMR bacteria through novel mechanisms of action is therefore urgently needed. Here, a new family of indole-containing arene ruthenium organometallic compounds are screened against several bacterial species and drug resistant strains. The most active complex [(p-cym)Ru(O-cyclohexyl-1H-indole-2-carbothioate)Cl] (3) shows growth inhibition and bactericidal activity against different organisms (Acinetobacter baumannii, Mycobacterium abscessus, Mycobacterium tuberculosis, Staphylococcus aureus, Salmonella enterica serovar Typhi and Escherichia coli), demonstrating broad-spectrum inhibitory activity. Importantly, this compound series exhibits low toxicity against human cells. Owing to the novelty of the antibiotic family, their moderate cytotoxicity, and their inhibitory activity against Gram positive, Gram negative and acid-fast, antibiotic resistant microorganisms, this series shows significant promise for further development.

2.
ChemMedChem ; 16(4): 624-629, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33119178

RESUMO

Electron-deficient half-sandwich complexes are a class of under-studied organometallics with demonstrated potential as metallodrug candidates. This study investigates the effect of two 16-electron organoruthenium complexes ([(p-cym)Ru(benzene-1,2-dithiolato)] (1) and [(p-cym)Ru(maleonitriledithiolate)] (2)) on the cell viability of non-immortalised human lymphocytes from healthy individuals. The genotoxic effects of 1 and 2 in lymphocytes are also investigated by using the Comet and cytokinesis-block micronucleus assays. Gene expression studies were carried out on a panel of genes involved in apoptosis and the DNA damage-repair response. Results show that the two 16-electron complexes do not have significant effect on the cell viability of human lymphocytes from healthy individuals. However, an increase in DNA damage is induced by both compounds, presumably through oxidative stress production.


Assuntos
Linfócitos/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Elétrons , Voluntários Saudáveis , Humanos , Compostos Organometálicos/síntese química , Compostos Organometálicos/química
3.
Molecules ; 25(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022980

RESUMO

The synthesis, characterisation and evaluation of the in vitro cytotoxicity of four indole-based half-sandwich metal complexes towards two ovarian cancer cell lines (A2780 and A2780cisR) and one normal prostate cell line (PNT2) are presented herein. Although capable of inducing catalytic oxidation of NADH and able to reduce NAD+ with high turnover frequencies, in cells and in the presence of sodium formate, these complexes also strongly interact with biomolecules such as glutathione. This work highlights that efficient out-of-cells catalytic activity might lead to higher reactivity towards biomolecules, thus inhibiting the in-cells catalytic processes.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Indóis/síntese química , Indóis/farmacologia , Antineoplásicos/química , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Glutationa/química , Humanos , Indóis/química , Concentração Inibidora 50 , Cinética , Conformação Molecular , NAD/química , Espectroscopia de Prótons por Ressonância Magnética , Soluções , Espectrofotometria Ultravioleta
4.
ChemMedChem ; 15(11): 982-987, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32237195

RESUMO

Ruthenium compounds have been shown to be promising alternatives to platinum(II) drugs. However, their clinical success depends on achieving mechanisms of action that overcome Pt-resistance mechanisms. Electron-deficient organoruthenium complexes are an understudied class of compounds that exhibit unusual reactivity in solution and might offer novel anticancer mechanisms of action. Here, we evaluate the in vitro and in vivo anticancer properties of the electron-deficient organoruthenium complex [(p-cymene)Ru(maleonitriledithiolate)]. This compound is found to be highly cytotoxic: 5 to 60 times more potent than cisplatin towards ovarian (A2780 and A2780cisR), colon (HCT116 p53+/+ and HCT116 p53-/-), and non-small cell lung H460 cancer cell lines. It shows no cross-resistance and is equally cytotoxic to both A2780 and A2780cisR cell lines. Furthermore, unlike cisplatin, the remarkable in vitro antiproliferative activity of this compound appears to be p53-independent. In vivo evaluation in the hollow-fibre assay across a panel of cancer cell types and subcutaneous H460 non-small cell lung cancer xenograft model hints at the activity of the complex. Although the impressive in vitro data are not fully corroborated by the in vivo follow-up, this work is the first preclinical study of electron-deficient half-sandwich complexes and highlights their promise as anticancer drug candidates.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Rutênio/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Elétrons , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química , Relação Estrutura-Atividade
5.
Eur J Inorg Chem ; 2020(11-12): 1052-1060, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33776557

RESUMO

We report the synthesis, characterisation and cytotoxicity of six cyclometalated rhodium(III) complexes [CpXRh(C^N)Z]0/+, in which CpX = Cp*, Cpph, or Cpbiph, C^N = benzo[h]quinoline, and Z = chloride or pyridine. Three x-ray crystal structures showing the expected "piano-stool" configurations have been determined. The chlorido complexes hydrolysed faster in aqueous solution, also reacted preferentially with 9-ethyl guanine or glutathione compared to their pyridine analogues. The 1-biphenyl-2,3,4,5,-tetramethylcyclopentadienyl complex [CpbiphRh(benzo[h]quinoline)Cl] (3a) was the most efficient catalyst in coenzyme reduced nicotinamide adenine dinucleotide (NADH) oxidation to NAD+ and induced an elevated level of reactive oxygen species (ROS) in A549 human lung cancer cells. The pyridine complex [CpbiphRh(benzo[h]quinoline)py]+ (3b) was the most potent against A549 lung and A2780 ovarian cancer cell lines, being 5-fold more active than cisplatin towards A549 cells, and acted as a ROS scavenger. This work highlights a ligand-controlled strategy to modulate the reactivity and cytotoxicity of cyclometalated rhodium anticancer complexes.

6.
Organometallics ; 37(10): 1555-1566, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29887657

RESUMO

We report the synthesis and characterization of four neutral organometallic tethered complexes, [Ru(η6-Ph(CH2)3-ethylenediamine-N-R)Cl], where R = methanesulfonyl (Ms, 1), toluenesulfonyl (Ts, 2), 4-trifluoromethylbenzenesulfonyl (Tf, 3), and 4-nitrobenzenesulfonyl (Nb, 4), including their X-ray crystal structures. These complexes exhibit moderate antiproliferative activity toward human ovarian, lung, hepatocellular, and breast cancer cell lines. Complex 2 in particular exhibits a low cross-resistance with cisplatin. The complexes show potent catalytic activity in the transfer hydrogenation of NAD+ to NADH with formate as hydride donor in aqueous solution (310 K, pH 7). Substituents on the chelated ligand decreased the turnover frequency in the order Nb > Tf > Ts > Ms. An enhancement of antiproliferative activity (up to 22%) was observed on coadministration with nontoxic concentrations of sodium formate (0.5-2 mM). Complex 2 binds to nucleobase guanine (9-EtG), but DNA appears not to be the target, as little binding to calf thymus DNA or bacterial plasmid DNA was observed. In addition, complex 2 reacts rapidly with glutathione (GSH), which might hamper transfer hydrogenation reactions in cells. Complex 2 induced a dose-dependent G1 cell cycle arrest after 24 h exposure in A2780 human ovarian cancer cells while promoting an increase in reactive oxygen species (ROS), which is likely to contribute to its antiproliferative activity.

7.
Chem Sci ; 9(12): 3177-3185, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29732100

RESUMO

The Cp x C-H protons in certain organometallic RhIII half-sandwich anticancer complexes [(η5-Cp x )Rh(N,N')Cl]+, where Cp x = Cp*, phenyl or biphenyl-Me4Cp, and N,N' = bipyridine, dimethylbipyridine, or phenanthroline, can undergo rapid sequential deuteration of all 15 Cp* methyl protons in aqueous media at ambient temperature. DFT calculations suggest a mechanism involving abstraction of a Cp* proton by the Rh-hydroxido complex, followed by sequential H/D exchange, with the Cp* rings behaving like dynamic molecular 'twisters'. The calculations reveal the crucial role of pπ orbitals of N,N'-chelated ligands in stabilizing deprotonated Cp x ligands, and also the accessibility of RhI-fulvene intermediates. They also provide insight into why biologically-inactive complexes such as [(Cp*)RhIII(en)Cl]+ and [(Cp*)IrIII(bpy)Cl]+ do not have activated Cp* rings. The thiol tripeptide glutathione (γ-l-Glu-l-Cys-Gly, GSH) and the activated dienophile N-methylmaleimide, (NMM) did not undergo addition reactions with the proposed RhI-fulvene, although they were able to control the extent of Cp* deuteration. We readily trapped and characterized RhI-fulvene intermediates by Diels-Alder [4+2] cyclo-addition reactions with the natural biological dienes isoprene and conjugated (9Z,11E)-linoleic acid in aqueous media, including cell culture medium, the first report of a Diels-Alder reaction of a metal-bound fulvene in aqueous solution. These findings will introduce new concepts into the design of organometallic Cp* anticancer complexes with novel mechanisms of action.

8.
Dalton Trans ; 47(21): 7178-7189, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29651471

RESUMO

A series of neutral pseudo-octahedral RuII sulfonamidoethylenediamine complexes [(η6-p-cym)Ru(N,N')Cl] where N,N' is N-(2-(R1,R2-amino)ethyl)-4-toluenesulfonamide (TsEn(R1,R2)) R1,R2 = Me,H (1); Me,Me (2); Et,H (3); benzyl,H (Bz, 4); 4-fluorobenzyl,H (4-F-Bz, 5) or naphthalen-2-ylmethyl,H (Naph, 6), were synthesised and characterised including the X-ray crystal structure of 3. These complexes catalyse the reduction of NAD+ regioselectively to 1,4-NADH by using formate as the hydride source. The catalytic efficiency depends markedly on the steric and electronic effects of the N-substitutent, with turnover frequencies (TOFs) increasing in the order: 1 < 2 < 3, 6 < 4, 5, achieving a TOF of 7.7 h-1 for 4 with a 95% yield of 1,4-NADH. The reduction rate was highest between pH* (deuterated solvent) 6 and 7.5 and improved with an increase in formate concentration (TOF of 18.8 h-1, 140 mM formate). The calculations suggested initial substitution of an aqua ligand by formate, followed by hydride transfer to RuII and then to NAD+, and indicated specific interactions between the aqua complex and both NAD+ and NADH, the former allowing a preorganisation involving interaction between the aqua ligand, formate anion and the pyridine ring of NAD+. The complexes exhibited antiproliferative activity towards A2780 human ovarian cancer cells with IC50 values ranging from 1 to 31 µM, the most potent complex, [(η6-p-cym)Ru(TsEn(Bz,H))Cl] (4, IC50 = 1.0 ± 0.1 µM), having a potency similar to the anticancer drug cisplatin. Co-administration with sodium formate (2 mM), increased the potency of all complexes towards A2780 cells by 20-36%, with the greatest effect seen for complex 6.


Assuntos
Antineoplásicos/farmacologia , Coenzimas/metabolismo , Formiatos/metabolismo , NAD/metabolismo , Compostos Organometálicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Biocatálise , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Etilenodiaminas/química , Etilenodiaminas/farmacologia , Formiatos/química , Humanos , Concentração de Íons de Hidrogênio , Hidrogenação/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Teoria Quântica , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química , Rutênio/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia
9.
J Inorg Biochem ; 153: 322-333, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26601938

RESUMO

Organometallic complexes have the potential to behave as catalytic drugs. We investigate here Rh(III) complexes of general formula [(Cp(x))Rh(N,N')(Cl)], where N,N' is ethylenediamine (en), 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) or N-(2-aminoethyl)-4-(trifluoromethyl)benzenesulfonamide (TfEn), and Cp(x) is pentamethylcyclopentadienyl (Cp*), 1-phenyl-2,3,4,5-tetramethylcyclopentadienyl (Cp(xPh)) or 1-biphenyl-2,3,4,5-tetramethyl cyclopentadienyl (Cp(xPhPh)). These complexes can reduce NAD(+) to NADH using formate as a hydride source under biologically-relevant conditions. The catalytic activity decreased in the order of N,N-chelated ligand bpy > phen > en with Cp* as the η(5)-donor. The en complexes (1-3) became more active with extension to the Cp(X) ring, whereas the activity of the phen (7-9) and bpy (4-6) compounds decreased. [Cp*Rh(bpy)Cl](+) (4) showed the highest catalytic activity, with a TOF of 37.4±2h(-1). Fast hydrolysis of the chlorido complexes 1-10 was observed by (1)H NMR (<10min at 310K). The pKa* values for the aqua adducts were determined to be ca. 8-10. Complexes 1-9 also catalysed the reduction of pyruvate to lactate using formate as the hydride donor. The efficiency of the transfer hydrogenation reactions was highly dependent on the nature of the chelating ligand and the Cp(x) ring. Competition reactions between NAD(+) and pyruvate for reduction by formate catalysed by 4 showed a preference for reduction of NAD(+). The antiproliferative activity of complex 3 towards A2780 human ovarian cancer cells increased by up to 50% when administered in combination with non-toxic doses of formate, suggesting that transfer hydrogenation can induce reductive stress in cancer cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , NAD/química , Piruvatos/química , Ródio/química , Catálise , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Formiatos/química , Humanos , Hidrogenação , Ácido Láctico/química , Oxirredução
10.
Curr Opin Chem Biol ; 25: 172-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25765750

RESUMO

Metal ions are known to act as catalytic centres in metallo-enzymes. On the other hand, low-molecular-weight metal complexes are widely used as catalysts in chemical systems. However, small catalysts do not have a large protein ligand to provide substrate selectivity and minimize catalyst poisoning. Despite the challenges that the lack of a protein ligand might pose, some success in the use of metal catalysts for biochemical transformations has been reported. Here, we present a brief overview of such reports, especially involving catalytic reactions in cells. Examples include C-C bond formation, deprotection and functional group modification, degradation of biomolecules, and redox modulation. We discuss four classes of catalytic redox modulators: photosensitizers, superoxide dismutase mimics, thiol oxidants, and transfer hydrogenation catalysts. Catalytic metallodrugs offer the prospect of low-dose therapy and a challenging new design strategy for future exploration.


Assuntos
Complexos de Coordenação/farmacologia , Desenho de Fármacos , Animais , Catálise , Complexos de Coordenação/química , Humanos , Oxirredução
11.
Nat Commun ; 6: 6582, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25791197

RESUMO

Organometallic complexes are effective hydrogenation catalysts for organic reactions. For example, Noyori-type ruthenium complexes catalyse reduction of ketones by transfer of hydride from formate. Here we show that such catalytic reactions can be achieved in cancer cells, offering a new strategy for the design of safe metal-based anticancer drugs. The activity of ruthenium(II) sulfonamido ethyleneamine complexes towards human ovarian cancer cells is enhanced by up to 50 × in the presence of low non-toxic doses of formate. The extent of conversion of coenzyme NAD(+) to NADH in cells is dependent on formate concentration. This novel reductive stress mechanism of cell death does not involve apoptosis or perturbation of mitochondrial membrane potentials. In contrast, iridium cyclopentadienyl catalysts cause cancer cell death by oxidative stress. Organometallic complexes therefore have an extraordinary ability to modulate the redox status of cancer cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma/metabolismo , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Neoplasias Ovarianas/metabolismo , Compostos de Rutênio/farmacologia , Catálise , Linhagem Celular , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Formiatos/farmacologia , Humanos , Hidrogenação , NAD/efeitos dos fármacos , NAD/metabolismo , Necrose
12.
Faraday Discuss ; 175: 229-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25270092

RESUMO

We report the encapsulation of highly hydrophobic 16-electron organometallic ruthenium and osmium carborane complexes [Ru/Os(p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-dithiolate)] ( and ) in Pluronic® triblock copolymer P123 core-shell micelles. The spherical nanoparticles and , dispersed in water, were characterized by dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), and synchrotron small-angle X-ray scattering (SAXS; diameter ca. 15 and 19 nm, respectively). Complexes and were highly active towards A2780 human ovarian cancer cells (IC(50) 0.17 and 2.50 µM, respectively) and the encapsulated complexes, as and nanoparticles, were less potent (IC(50) 6.69 µM and 117.5 µM, respectively), but more selective towards cancer cells compared to normal cells.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Micelas , Compostos Organometálicos/farmacologia , Neoplasias Ovarianas/patologia , Antineoplásicos/síntese química , Antineoplásicos/química , Boranos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Osmio/química , Neoplasias Ovarianas/tratamento farmacológico , Polímeros/química , Rutênio/química , Relação Estrutura-Atividade
13.
Nat Commun ; 5: 3851, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24861089

RESUMO

Metal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium-osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms.


Assuntos
Nanopartículas Metálicas/química , Metais/química , Cristalização , Elétrons , Grafite/química , Nanopartículas Metálicas/ultraestrutura , Micelas , Osmio/química , Rutênio/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA