Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 161(4)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39037135

RESUMO

We report a study on the reactive collision of S+(4S) with H2, HD, and D2 combining guided ion beam experiments and quantum-mechanical calculations. It is found that the reactive cross sections reflect the existence of two different mechanisms, one being spin-forbidden. Using different models, we demonstrate that the spin-forbidden pathway follows a complex mechanism involving three electronic states instead of two as previously thought. The good agreement between theory and experiment validates the methodology employed and allows us to fully understand the reaction mechanism. This study also provides new fundamental insights into the intersystem crossing process.

2.
J Mass Spectrom ; 59(7): e5066, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38888354

RESUMO

Structural change of ions induced by collision with a neutral has been studied in a guided ion beam tandem mass spectrometer, using Time-Of-Flight measurements and SIMION simulation. The exothermic catalytic isomerization of HOC+ to HCO+ is used to explore the new methodology. Isomerization is catalyzed via a proton transport mechanism through the interplay of a neutral molecule, the catalyst. Four different potential catalysts, Ne, D2, CH4, and C18O, were studied at different collision energies. SIMION simulation of the ion path and collision in the instrument leads to the highlight of a specific signature related to the catalytic isomerization in the time-of-flight spectra. This signature is used to identify the experimental conditions where isomerization takes place. Only C18O, at low collision energies, gives a clear signature of catalytic isomerization, and a quantitative estimate of the catalyzed isomerization cross-section and rate constant is derived. This new methodology is sensitive to clear presence of catalyzed isomerization and can be used in instruments designed for cross-section measurements, provided low collision energy is used and ion bunching is available.

3.
RSC Adv ; 12(55): 35655-35665, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36545082

RESUMO

A bio-responsive nanoparticle was formed by the directed self-assembly (DSA) of a hydrophobic NIR-fluorophore with poloxamer P188. Fluorophore emission was switched off when part of the nanoparticle, however upon stimulus induced nanoparticle dis-assembly the emission switched on. The emission quenching was shown to be due to fluorophore hydration and aggregation within the nanoparticle and the turn on response attributable to nanoparticle disassembly with embedding of the fluorophore within lipophilic environments. This was exploited for temporal and spatial live cell imaging with a measurable fluorescence response seen upon intracellular delivery of the fluorophore. The first dynamic response, seen within minutes, was from lipid droplets with other lipophilic regions such as the endoplasmic reticulum, nuclear membranes and secretory vacuoles imageable after hours. The high degree of fluorophore photostability facilitated continuous imaging for extended periods and the off to on switching facilitated the real-time observation of lipid droplet biogenesis as they emerged from the endoplasmic reticulum. With an in-depth understanding of the principles involved, further assembly controlling functional responses could be anticipated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA