Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 42(12): 113508, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38019650

RESUMO

Group 3 innate lymphoid cells (ILC3s) are vital for defending tissue barriers from invading pathogens. Hypoxia influences the production of intestinal ILC3-derived cytokines by activating HIF. Yet, the mechanisms governing HIF-1α in ILC3s and other innate RORγt+ cells during in vivo infections are poorly understood. In our study, transgenic mice with specific Hif-1a gene inactivation in innate RORγt+ cells (RAG1KO HIF-1α▵Rorc) exhibit more severe colitis following Citrobacter rodentium infection, primarily due to the inability to upregulate IL-22. We find that HIF-1α▵Rorc mice have impaired IL-22 production in ILC3s, while non-ILC3 innate RORγt+ cells, also capable of producing IL-22, remain unaffected. Furthermore, we show that IL-18, induced by Toll-like receptor 2, selectively triggers IL-22 in ILC3s by transcriptionally upregulating HIF-1α, revealing an oxygen-independent regulatory pathway. Our results highlight that, during late-stage C. rodentium infection, IL-18 induction in the colon promotes IL-22 through HIF-1α in ILC3s, which is crucial for protection against this pathogen.


Assuntos
Colite , Interleucinas , Camundongos , Animais , Interleucinas/genética , Interleucinas/metabolismo , Imunidade Inata , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Linfócitos/metabolismo , Interleucina-18 , Inflamação , Camundongos Transgênicos , Camundongos Endogâmicos C57BL
2.
Front Immunol ; 14: 1200259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475858

RESUMO

Introduction: Macrophages are a heterogeneous population of innate immune cells that support tissue homeostasis through their involvement in tissue development and repair, and pathogen defense. Emerging data reveal that metabolism may control macrophage polarization and function and, conversely, phenotypic polarization may drive metabolic reprogramming. Methods: Here we use biochemical analysis, correlative cryogenic fluorescence microscopy and cryo-focused ion-beam scanning electron microscopy. Results: We demonstrate that growth hormone (GH) reprograms inflammatory GM-CSF-primed monocyte-derived macrophages (GM-MØ) by functioning as a metabolic modulator. We found that exogenous treatment of GM-MØ with recombinant human GH reduced glycolysis and lactate production to levels similar to those found in anti-inflammatory M-MØ. Moreover, GH treatment of GM-MØ augmented mitochondrial volume and altered mitochondrial dynamics, including the remodeling of the inner membrane to increase the density of cristae. Conclusions: Our data demonstrate that GH likely serves a modulatory role in the metabolism of inflammatory macrophages and suggest that metabolic reprogramming of macrophages should be considered as a new target to intervene in inflammatory diseases.


Assuntos
Hormônio do Crescimento , Macrófagos , Humanos , Hormônio do Crescimento/farmacologia , Hormônio do Crescimento/metabolismo , Glicólise , Homeostase , Mitocôndrias/metabolismo
3.
J Innate Immun ; : 1-14, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36380627

RESUMO

Methotrexate (MTX) is an antifolate drug used as a chemotherapeutic agent for acute lymphoblastic leukemia, where MTX improves patients' prognosis. Macrophage reprogramming is being increasingly assessed as an antitumor therapeutic strategy. However, and although MTX limits the pathogenic action of macrophages in chronic inflammatory diseases, its effects on tumor-promoting macrophages have not been previously explored. We now report that MTX shapes the transcriptional and functional profile of M-CSF-dependent human macrophages, whose transcriptome is highly enriched in the gene signature that defines pathogenic tumor-associated macrophages ("large TAM"). Specifically, MTX prompted the acquisition of the gene signature of antitumoral "small TAM" and skewed macrophages toward an IL-6high IFNß1high IL-10low phenotype upon subsequent stimulation. Mechanistically, the MTX-induced macrophage reprogramming effect correlated with a reduction of the M-CSF receptor CSF1R expression and function, as well as a diminished expression of MAF and MAFB transcription factors, primary determinants of pro-tumoral macrophages whose transcriptional activity is dependent on GSK3ß. Indeed, the ability of MTX to transcriptionally reprogram macrophages toward an antitumoral phenotype was abrogated by inhibition of GSK3ß. Globally, our results establish MTX as a macrophage reprogramming drug and indicate that its ability to modulate macrophage polarization may also underlie its therapeutic benefits. Since GSK3ß inhibition abrogates the reprogramming action of MTX, our results suggest that the GSK3ß-MAFB/MAF axis constitutes a target for the macrophage-centered antitumor strategies.

4.
Front Immunol ; 13: 925559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903108

RESUMO

Sphingolipids, ceramides and cholesterol are integral components of cellular membranes, and they also play important roles in signal transduction by regulating the dynamics of membrane receptors through their effects on membrane fluidity. Here, we combined biochemical and functional assays with single-particle tracking analysis of diffusion in the plasma membrane to demonstrate that the local lipid environment regulates CXCR4 organization and function and modulates chemokine-triggered directed cell migration. Prolonged treatment of T cells with bacterial sphingomyelinase promoted the complete and sustained breakdown of sphingomyelins and the accumulation of the corresponding ceramides, which altered both membrane fluidity and CXCR4 nanoclustering and dynamics. Under these conditions CXCR4 retained some CXCL12-mediated signaling activity but failed to promote efficient directed cell migration. Our data underscore a critical role for the local lipid composition at the cell membrane in regulating the lateral mobility of chemokine receptors, and their ability to dynamically increase receptor density at the leading edge to promote efficient cell migration.


Assuntos
Receptores CXCR4 , Esfingomielinas , Movimento Celular , Ceramidas/metabolismo , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/metabolismo , Humanos , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(21): e2119483119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35588454

RESUMO

Chemokine receptor nanoscale organization at the cell membrane is orchestrated by the actin cytoskeleton and influences cell responses. Using single-particle tracking analysis we show that CXCR4R334X, a truncated mutant chemokine receptor linked to WHIM syndrome (warts, hypogammaglobulinemia, infections, myelokathexis), fails to nanoclusterize after CXCL12 stimulation, and alters the lateral mobility and spatial organization of CXCR4 when coexpressed. These findings correlate with multiple phalloidin-positive protrusions in cells expressing CXCR4R334X, and their inability to correctly sense chemokine gradients. The underlying mechanisms involve inappropriate actin cytoskeleton remodeling due to the inadequate ß-arrestin1 activation by CXCR4R334X, which disrupts the equilibrium between activated and deactivated cofilin. Overall, we provide insights into the molecular mechanisms governing CXCR4 nanoclustering, signaling and cell function, and highlight the essential scaffold role of ß-arrestin1 to support CXCL12-mediated actin reorganization and receptor clustering. These defects associated with CXCR4R334X expression might contribute to the severe immunological symptoms associated with WHIM syndrome.


Assuntos
Doenças da Imunodeficiência Primária , Receptores CXCR4 , Verrugas , Fatores de Despolimerização de Actina/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Humanos , Mutação , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Imagem Individual de Molécula , Verrugas/genética , Verrugas/metabolismo
7.
J Immunol ; 205(3): 776-788, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591394

RESUMO

Growth hormone (GH), a pleiotropic hormone secreted by the pituitary gland, regulates immune and inflammatory responses. In this study, we show that GH regulates the phenotypic and functional plasticity of macrophages both in vitro and in vivo. Specifically, GH treatment of GM-CSF-primed monocyte-derived macrophages promotes a significant enrichment of anti-inflammatory genes and dampens the proinflammatory cytokine profile through PI3K-mediated downregulation of activin A and upregulation of MAFB, a critical transcription factor for anti-inflammatory polarization of human macrophages. These in vitro data correlate with improved remission of inflammation and mucosal repair during recovery in the acute dextran sodium sulfate-induced colitis model in GH-overexpressing mice. In this model, in addition to the GH-mediated effects on other immune cells, we observed that macrophages from inflamed gut acquire an anti-inflammatory/reparative profile. Overall, these data indicate that GH reprograms inflammatory macrophages to an anti-inflammatory phenotype and improves resolution during pathologic inflammatory responses.


Assuntos
Reprogramação Celular/imunologia , Colite/imunologia , Regulação da Expressão Gênica/imunologia , Hormônio do Crescimento/imunologia , Macrófagos/imunologia , Fator de Transcrição MafB/imunologia , Animais , Bovinos , Reprogramação Celular/genética , Colite/induzido quimicamente , Colite/genética , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Hormônio do Crescimento/genética , Fator de Transcrição MafB/genética , Camundongos , Camundongos Transgênicos
8.
Ann Rheum Dis ; 75(12): 2157-2165, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26920997

RESUMO

OBJECTIVES: Methotrexate (MTX) functions as an antiproliferative agent in cancer and an anti-inflammatory drug in rheumatoid arthritis (RA). Although macrophages critically contribute to RA pathology, their response to MTX remains unknown. As a means to identify MTX response markers, we have explored its transcriptional effect on macrophages polarised by GM-CSF (GM-MØ) or M-CSF (M-MØ), which resemble proinflammatory and anti-inflammatory macrophages found in RA and normal joints, respectively. METHODS: The transcriptomic profile of both human macrophage subtypes exposed to 50 nM of MTX under long-term and short-term schedules were determined using gene expression microarrays, and validated through quantitative real time PCR and ELISA. The molecular pathway involved in macrophage MTX-responsiveness was determined through pharmacological, siRNA-mediated knockdown approaches, metabolomics for polyglutamylated-MTX detection, western blot, and immunofluorescence on RA and normal joints. RESULTS: MTX exclusively modulated gene expression in proinflammatory GM-MØ, where it influenced the expression of 757 genes and induced CCL20 and LIF at the mRNA and protein levels. Pharmacological and siRNA-mediated approaches indicated that macrophage subset-specific MTX responsiveness correlates with thymidylate synthase (TS) expression, as proinflammatory TS+ GM-MØ are susceptible to MTX, whereas anti-inflammatory TSlow/- M-MØ and monocytes are refractory to MTX. Furthermore, p53 activity was found to mediate the TS-dependent MTX-responsiveness of proinflammatory TS+ GM-MØ. Importantly, TS and p53 were found to be expressed by CD163+/TNFα+ GM-CSF-polarised macrophages from RA joints but not from normal synovium. CONCLUSIONS: Macrophage response to MTX is polarisation-dependent and determined by the TS-p53 axis. CCL20 and LIF constitute novel macrophage markers for MTX responsiveness in vitro.


Assuntos
Antirreumáticos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Metotrexato/farmacologia , Transdução de Sinais/efeitos dos fármacos , Humanos , Timidilato Sintase/metabolismo , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo
9.
J Pathol ; 235(3): 515-26, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25319955

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease whose pathogenesis and severity correlates with the presence of macrophage-derived pro-inflammatory cytokines within the inflamed synovium. Macrophage-derived cytokines fuel the pathological processes in RA and are targets of clinically successful therapies. However, although macrophage polarization determines cytokine production, the polarization state of macrophages in RA joints remains poorly defined. To dissect the molecular basis for the tissue-damaging effects of macrophages in RA joints, we undertook the phenotypic and transcriptomic characterization of ex vivo isolated CD14(+) RA synovial fluid (RA-SF) macrophages. Flow cytometry and gene profiling indicated that RA-SF macrophages express pro-inflammatory polarization markers (MMP12, EGLN3, CCR2), lack expression of markers associated with homeostatic and anti-inflammatory polarization (IGF1, HTR2B) and exhibit a transcriptomic profile that resembles the activin A-dependent gene signature of pro-inflammatory in vitro-generated macrophages. In fact, high levels of Smad-activating activin A were found in RA-SF and, accordingly, the Smad signalling pathway was activated in ex vivo-isolated RA-SF macrophages. In vitro experiments on monocytes and macrophages indicated that RA-SF promoted the acquisition of pro-inflammatory markers (INHBA, MMP12, EGLN3, CCR2) but led to a significant reduction in the expression of genes associated with homeostasis and inflammation resolution (FOLR2, SERPINB2, IGF1, CD36), thus confirming the pro-inflammatory polarization ability of RA-SF. Importantly, the macrophage-polarizing ability of RA-SF was inhibited by an anti-activin A-neutralizing antibody, thus demonstrating that activin A mediates the pro-inflammatory macrophage-polarizing ability of RA-SF. Moreover, and in line with these findings, multicolour immunofluorescence evidenced that macrophages within RA synovial membranes (RA-SM) also express pro-inflammatory polarization markers whose expression is activin A-dependent. Altogether, our results demonstrate that macrophages from RA synovial fluids and membranes exhibit an MMP12(+) EGLN3(+) CCR2(+) pro-inflammatory polarization state whose acquisition is partly dependent on activin A from the synovial fluid.


Assuntos
Ativinas/metabolismo , Artrite Reumatoide/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Membrana Sinovial/metabolismo , Transcriptoma , Adulto , Idoso , Artrite Reumatoide/patologia , Células Cultivadas , Feminino , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Técnicas In Vitro , Inflamação/patologia , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/patologia , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Pessoa de Meia-Idade , Fenótipo , Receptores CCR2/metabolismo , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Membrana Sinovial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA