Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Antibiotics (Basel) ; 12(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37508222

RESUMO

The emergence of pre-extensively drug-resistant tuberculosis (pre-XDR-TB) is a threat to TB control programs in developing countries such as Zambia. Studies in Zambia have applied molecular techniques to understand drug-resistance-associated mutations, circulating lineages and transmission patterns of multi-drug-resistant (MDR) Mycobacterium tuberculosis. However, none has reported genotypes and mutations associated with pre-XDR TB. This study characterized 63 drug-resistant M. tuberculosis strains from the University Teaching Hospital between 2018 and 2019 using targeted gene sequencing and conveniently selected 50 strains for whole genome sequencing. Sixty strains had resistance mutations associated to MDR, one polyresistant, and two rifampicin resistant. Among MDR strains, seven percent (4/60) had mutations associated with pre-XDR-TB. While four, one and nine strains had mutations associated with ethionamide, para-amino-salicylic acid and streptomycin resistances, respectively. All 50 strains belonged to lineage 4 with the predominant sub-lineage 4.3.4.2.1 (38%). Three of four pre-XDR strains belonged to sub-lineage 4.3.4.2.1. Sub-lineage 4.3.4.2.1 strains were less clustered when compared to sub-lineages L4.9.1 and L4.3.4.1 based on single nucleotide polymorphism differences. The finding that resistances to second-line drugs have emerged among MDR-TB is a threat to TB control. Hence, the study recommends a strengthened routine drug susceptibility testing for second-line TB drugs to stop the progression of pre-XDR to XDR-TB and improve patient treatment outcomes.

2.
Trop Med Health ; 50(1): 8, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35012673

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis complex (MTBC) in humans and animals. Numbers of multi drug resistance TB (MDR-TB), extrapulmonary TB (EPTB) and zoonotic TB cases are increasingly being reported every year in Nepal posing a major public health problem. Therefore, the Government of Nepal should act immediately to strengthen the screening facilities across the country to be able to identify and treat the TB infected patients as well as detect zoonotic TB in animal species. Endorsement of One Health Act by the Government of Nepal is an opportunity to initiate the joint programs for TB surveillance among human and animal species using one health approach to reduce the TB burden in Nepal.

3.
Int J Infect Dis ; 114: 142-150, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34718155

RESUMO

OBJECTIVE: Zambia is among the 30 high tuberculosis burden countries in the world. Despite increasing reports of multidrug-resistant tuberculosis (MDR-TB) in routine surveillance, information on the transmission of MDR Mycobacterium tuberculosis strains is largely unknown. This study elucidated the genetic diversity and transmission of MDR M. tuberculosis strains in Lusaka, Zambia. METHODS: Eighty-five MDR M. tuberculosis samples collected from 2013 to 2017 at the University Teaching Hospital were used. Drug-resistance associated gene sequencing, spoligotyping, 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR), and multiplex PCR for RD-Rio sub-lineage identification were applied. RESULTS: The identified clades were LAM (48%), CAS (29%), T (14%), X (6%) and Harlem (2%). Strains belonging to SITs 21/CAS1-Kili and 20/LAM1 formed the largest clonal complexes. Combined spoligotyping and 24 loci-MIRU-VNTR revealed 47 genotypic patterns with a clustering rate of 63%. Ninety-five percent of LAM strains belonged to the RD-Rio sub-lineage. CONCLUSION: The high clustering rate suggested that a large proportion of MDR-TB was due to recent transmission rather than the independent acquisition of MDR. This spread was attributed to clonal expansion of SIT21/CAS1-Kili and SIT20/LAM1 strains. Therefore, TB control programs recommending genotyping coupled with conventional epidemiological methods can guide measures for stopping the spread of MDR-TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Variação Genética , Genótipo , Humanos , Repetições Minissatélites , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Zâmbia/epidemiologia
4.
Antibiotics (Basel) ; 10(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680750

RESUMO

Streptomycin (STR) is recommended for the management of multidrug-resistant tuberculosis (MDR-TB). Streptomycin resistance-conferring mutation types and frequency are shown to be influenced by genotypes of circulating strains in a population. This study aimed to characterize the mutations in MDR-TB isolates and examine their relationship with the genotypes in Zambia. A total of 138 MDR-TB isolates stored at the University Teaching Hospital Tuberculosis Reference Laboratory in Zambia were analyzed using spoligotyping and sequencing of STR resistance-associated genes. Streptomycin resistance was observed in 65.9% (91/138) of MDR-TB isolates. Mutations in rpsL, rrs, and gidB accounted for 33%, 12.1%, and 49.5%, respectively. Amino acid substitution K43R in rpsL was strongly associated with the CAS1_Kili genotype (p < 0.0001). The combination of three genes could predict 91.2% of STR resistance. Clustering of isolates based on resistance-conferring mutations and spoligotyping was observed. The clustering of isolates suggests that the increase in STR-resistant MDR-TB in Zambia is largely due to the spread of resistant strains from inadequate treatment. Therefore, rapid detection of STR resistance genetically is recommended before its use in MDR-TB treatment in Zambia.

5.
Diagn Microbiol Infect Dis ; 101(4): 115494, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34391980

RESUMO

Early detection and treatment are paramount for the timely control of Mycobacterium avium infections. Herein, we designed a LAMP assay targeting a widely used species-specific marker IS1245 for the rapid detection of M. avium and evaluated its applicability using human (n = 137) and pig (n = 91) M. avium isolates from Japan. The developed assay could detect as low as 1 genome copy of M. avium DNA within 30 minutes. All 91 (100%) M. avium isolates from pigs were detected positive while all other tested bacterial species were negative. Interestingly, among the 137 clinical M. avium isolates, 41 (30%) were undetectable with this LAMP assay as they lacked IS1245, the absence of which was revealed by PCR and whole-genome sequencing. These findings highlighted genotypic differences in M. avium strains from humans and pigs in Japan and how this diversity can influence the applicability of a detection tool across different geographic areas and hosts.


Assuntos
Elementos de DNA Transponíveis/genética , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium avium/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Variação Genética , Genoma Bacteriano/genética , Humanos , Japão , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/veterinária , Mycobacterium avium/classificação , Mycobacterium avium/isolamento & purificação , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Especificidade da Espécie , Suínos , Doenças dos Suínos/microbiologia
6.
Jpn J Infect Dis ; 74(4): 385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305049

RESUMO

Volume 74, no.3, p.214-219, 2021. Page 214, affiliation "1TBA Co., LTD, Sendai; 2Hokkaido University Research Center for Zoonosis Control, Sapporo; 3Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Sapporo; 4Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia; 5Department of Pathology and Microbiology, University Teaching Hospital Ministry of Health, Lusaka, Zambia; and 6Ministry of Health, Ndeke House, Lusaka, Zambia." should read "1TBA Co., LTD, Sendai, Japan; 2Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan; 3Hokkaido University, GI-CoRE Global Station for Zoonosis Control, Sapporo, Japan; 4Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia; 5Department of Pathology and Microbiology, University Teaching Hospital Ministry of Health, Lusaka, Zambia; and 6Ministry of Health, Ndeke House, Lusaka, Zambia".

7.
PLoS Negl Trop Dis ; 15(1): e0008996, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493196

RESUMO

Bovine tuberculosis (TB) caused by Mycobacterium bovis is a significant health threat to cattle and a zoonotic threat for humans in many developing countries. Rapid and accurate detection of M. bovis is fundamental for controlling the disease in animals and humans, and for the proper treatment of patients as one of the first-line anti-TB drug, pyrazinamide, is ineffective against M. bovis. Currently, there are no rapid, simplified and low-cost diagnostic methods that can be easily integrated for use in many developing countries. Here, we report the development of a loop-mediated isothermal amplification (LAMP) assay for specific identification of M. bovis by targeting the region of difference 4 (RD4), a 12.7 kb genomic region that is deleted solely in M. bovis. The assay's specificity was evaluated using 139 isolates comprising 65 M. bovis isolates, 40 M. tuberculosis isolates, seven M. tuberculosis complex reference strains, 22 non-tuberculous mycobacteria and five other bacteria. The established LAMP detected only M. bovis isolates as positive and no false positives were observed using the other mycobacteria and non-mycobacteria tested. Our LAMP assay detected as low as 10 copies of M. bovis genomic DNA within 40 minutes. The procedure of LAMP is simple with an incubation at a constant temperature. Results are observed with the naked eye by a color change, and there is no need for expensive equipment. The established LAMP can be used for the detection of M. bovis infections in cattle and humans in resource-limited areas.


Assuntos
Técnicas de Diagnóstico Molecular/métodos , Mycobacterium bovis/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Bovinos , Humanos , Mycobacterium bovis/genética , Sensibilidade e Especificidade
8.
Antibiotics (Basel) ; 11(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052906

RESUMO

Globally, tuberculosis (TB) is a major cause of death due to antimicrobial resistance. Mycobacterium tuberculosis CAS1-Kili strains that belong to lineage 3 (Central Asian Strain, CAS) were previously implicated in the spread of multidrug-resistant (MDR)-TB in Lusaka, Zambia. Thus, we investigated recent transmission of those strains by whole-genome sequencing (WGS) with Illumina MiSeq platform. Twelve MDR CAS1-Kili isolates clustered by traditional methods (MIRU-VNTR and spoligotyping) were used. A total of 92% (11/12) of isolates belonged to a cluster (≤12 SNPs) while 50% (6/12) were involved in recent transmission events, as they differed by ≤5 SNPs. All the isolates had KatG Ser315Thr (isoniazid resistance), EmbB Met306 substitutions (ethambutol resistance) and several kinds of rpoB mutations (rifampicin resistance). WGS also revealed compensatory mutations including a novel deletion in embA regulatory region (-35A > del). Several strains shared the same combinations of drug-resistance-associated mutations indicating transmission of MDR strains. Zambian strains belonged to the same clade as Tanzanian, Malawian and European strains, although most of those were pan-drug-susceptible. Hence, complimentary use of WGS to traditional epidemiological methods provides an in-depth insight on transmission and drug resistance patterns which can guide targeted control measures to stop the spread of MDR-TB.

9.
Int J Infect Dis ; 102: 489-496, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33059094

RESUMO

OBJECTIVES: The burden of multidrug-resistant tuberculosis (MDR-TB) has been reported to be increasing in Zambia. The reasons for the increase are still unclear. This study determined the diversity of Mycobacterium tuberculosis genotypes among isolates in Lusaka, the capital city, and investigated their association with MDR-TB. METHODS: Spoligotyping, large sequence polymorphism (LSP) analysis, and sequencing of MDR associated genes were performed on a total of 274 M. tuberculosis clinical isolates stored at the University Teaching Hospital from 2013 to 2017. Of these, 134 were MDR-TB while 126 were pan-susceptible. RESULTS: Spoligotyping showed the LAM family as the most predominant genotype (149/274, 54.4%) followed by the CAS family (44/274, 16.1%), T family (39/274, 14.2%), and minor proportions of X, S, Harleem, EAI and Beijing spoligofamilies were identified. Three M. bovis isolates were also observed. Among those, CAS1-Kili (SIT 21) and LAM1 (SIT 20) subfamilies showed a propensity for MDR-TB with p = 0.0001 and p = 0.001, respectively. CONCLUSIONS: This phenomenon might explain the future increase in the MDR-TB burden caused by specific lineages in Zambia. Therefore, it is recommended that the National TB control program in the country complements conventional control strategies with molecular analysis for monitoring and surveillance of MDR-TB epidemiology.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Variação Genética/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Genótipo , Hospitais de Ensino , Humanos , Mutação , Fenótipo , Polimorfismo Genético/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Zâmbia/epidemiologia
10.
Jpn J Infect Dis ; 74(3): 214-219, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-33132303

RESUMO

Despite the availability of anti-tuberculosis drugs, the treatment of tuberculosis has been complicated by drug-resistant tuberculosis. The early detection of drug resistance makes early treatment possible. However, the available tools are mainly for rifampicin resistance detection, and the existing isoniazid resistance detection method is expensive, highly technical, and complicated, making it unsustainable for use in developing nations. This study aimed to develop a simple, rapid, and low-cost diagnostic kit for isoniazid-resistant tuberculosis using the single-stranded tag hybridization method to target an isoniazid resistance-conferring mutation. Specificity and sensitivity were assessed using DNA extracted from 49 isoniazid-resistant and 41 isoniazid-susceptible Mycobacterium tuberculosis clinical isolates cultured in mycobacterial growth indicator tubes. Positive signals were observed on mutant and wild-type lines with 100% sensitivity and specificity compared with Sanger sequencing results. In contrast, no positive signal was observed for non-tuberculosis mycobacteria. The detection limit of this method was 103 CFU or less. The STH-PAS system for isoniazid-resistant M. tuberculosis detection developed in this study offers a better alternative to conventional phenotypic isoniazid resistance determination, which will be of both clinical and epidemiological significance in resource-limited nations.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Catalase/isolamento & purificação , Cromatografia/métodos , Isoniazida/isolamento & purificação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Antituberculosos/farmacologia , DNA Bacteriano , Humanos , Isoniazida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Sensibilidade e Especificidade , Análise de Sequência , Tuberculose Resistente a Múltiplos Medicamentos/genética
11.
Tuberculosis (Edinb) ; 109: 117-122, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29559115

RESUMO

Pyrazinamide forms a core part of treatment for all types of tuberculosis (TB) in Zambia. Due to challenges associated with pyrazinamide testing, little information is available to indicate the frequency of resistance to this drug in Zambia. To determine the frequency of pyrazinamide (PZA) resistance and its correlation with mutation in pncA in Mycobacterium tuberculosis isolated from patients in Lusaka, Zambia, BACTEC MGIT M960 was used for phenotypic PZA susceptibility testing while sequencing was used to determine resistance-conferring mutations in the pncA. Of the 131 isolates analyzed, 32 were phenotypically resistant to PZA. Among multidrug-resistant (MDR) M. tuberculosis isolates, the frequency of PZA resistance was 21 of 35 (58.3%). And 27 of 32 PZA resistant isolates had mutations in the pncA that seem to confer resistance. With BACTEC MGIT 960 as the reference standard, gene sequencing showed 84.4% sensitivity and 100% specificity. Nine new mutations were identified and the single nucleotide substitution T104G and C195T were the most frequent mutations. However, they were observed in both susceptible and resistant strains and indicating that they are non-resistance conferring mutations. This study has demonstrated that PZA susceptibility testing is necessary especially in patients suffering from MDR-TB as approximately half of the patients have PZA resistant TB. Similar studies will have to be carried out in other provinces to get an accurate estimate of PZA resistance in Zambia. Mutations in pncA were the major mechanism of PZA resistance with no involvement of rpsA and panD genes. However, the presence of mutations among phenotypically PZA susceptible M. tuberculosis isolates makes it challenging to independently use genotyping method for the determination of PZA resistance.


Assuntos
Amidoidrolases/genética , Antituberculosos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Mutação , Mycobacterium tuberculosis/genética , Pirazinamida/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/microbiologia , Análise Mutacional de DNA , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Taxa de Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Fenótipo , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Zâmbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA