Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 14(1): 8754, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627478

RESUMO

Wild-type SAASoti and its monomeric variant mSAASoti can undergo phototransformations, including reversible photoswitching of the green form to a nonfluorescent state and irreversible green-to-red photoconversion. In this study, we extend the photochemistry of mSAASoti variants to enable reversible photoswitching of the red form. This result is achieved by rational and site-saturated mutagenesis of the M163 and F177 residues. In the case of mSAASoti it is M163T substitution that leads to the fastest switching and the most photostable variant, and reversible photoswitching can be observed for both green and red forms when expressed in eukaryotic cells. We obtained a 13-fold increase in the switching efficiency with the maximum switching contrast of the green form and the appearance of comparable switching of the red form for the C21N/M163T mSAASoti variant. The crystal structure of the C21N mSAASoti in its green on-state was obtained for the first time at 3.0 Å resolution, and it is in good agreement with previously calculated 3D-model. Dynamic network analysis reveals that efficient photoswitching occurs if motions of the 66H residue and phenyl fragment of chromophore are correlated and these moieties belong to the same community.


Assuntos
Corantes , Proteínas Luminescentes/genética , Proteínas Luminescentes/química , Proteínas de Fluorescência Verde/genética , Mutagênese , Fotoquímica
2.
Microorganisms ; 11(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38138110

RESUMO

It has been established that the human atrial natriuretic peptide is able to alter the effect of azithromycin on Kytococcus schroeteri H01 and Staphylococcus aureus 209P monospecies and binary biofilms. The effect of the hormone depends on the surface type and cultivation system, and it may have both enhancing and counteracting effects. The antagonistic effect of the hormone was observed mostly on hydrophobic surfaces, whereas the additive effect was observed on hydrophilic surfaces like glass. Also, the effect of the hormone depends on the antibiotic concentration and bacterial species. The combination of azithromycin and ANP led to an amplification of cell aggregation in biofilms, to the potential increase in matrix synthesis, and to a decrease in S. aureus in the binary community. Also, ANP, azithromycin, and their combinations caused the differential expression of genes of resistance to different antibiotics, like macrolides (mostly increasing expression in kytococci), fluoroquinolones, aminoglycosides, and others, in both bacteria.

3.
Plants (Basel) ; 12(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38140427

RESUMO

Cell-to-cell transport of plant viruses through plasmodesmata (PD) requires viral movement proteins (MPs) often associated with cell membranes. The genome of the Hibiscus green spot virus encodes two MPs, BMB1 and BMB2, which enable virus cell-to-cell transport. BMB2 is known to localize to PD-associated membrane bodies (PAMBs), which are derived from the endoplasmic reticulum (ER) structures, and to direct BMB1 to PAMBs. This paper reports the fine structure of PAMBs. Immunogold labeling confirms the previously observed localization of BMB1 and BMB2 to PAMBs. EM tomography data show that the ER-derived structures in PAMBs are mostly cisterns interconnected by numerous intermembrane contacts that likely stabilize PAMBs. These contacts predominantly involve the rims of the cisterns rather than their flat surfaces. Using FRET-FLIM (Förster resonance energy transfer between fluorophores detected by fluorescence-lifetime imaging microscopy) and chemical cross-linking, BMB2 is shown to self-interact and form high-molecular-weight complexes. As BMB2 has been shown to have an affinity for highly curved membranes at cisternal rims, the interaction of BMB2 molecules located at rims of adjacent cisterns is suggested to be involved in the formation of intermembrane contacts in PAMBs.

4.
Viruses ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36560746

RESUMO

Movement proteins (MPs) of plant viruses enable the translocation of viral genomes from infected to healthy cells through plasmodesmata (PD). The MPs functions involve the increase of the PD permeability and routing of viral genome both to the PD entrance and through the modified PD. Hibiscus green spot virus encodes two MPs, termed BMB1 and BMB2, which act in concert to accomplish virus cell-to-cell transport. BMB1, representing an NTPase/helicase domain-containing RNA-binding protein, localizes to the cytoplasm and the nucleoplasm. BMB2 is a small hydrophobic protein that interacts with the endoplasmic reticulum (ER) membranes and induces local constrictions of the ER tubules. In plant cells, BMB2 localizes to PD-associated membrane bodies (PAMBs) consisting of modified ER tubules and directs BMB1 to PAMBs. Here, we demonstrate that BMB1 and BMB2 interact in vitro and in vivo, and that their specific interaction is essential for BMB2-directed targeting of BMB1 to PAMBs. Using mutagenesis, we show that the interaction involves the C-terminal BMB1 region and the N-terminal region of BMB2.


Assuntos
Hibiscus , Vírus de Plantas , Vírus de RNA , Hibiscus/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Retículo Endoplasmático , Vírus de RNA/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Nicotiana , Plasmodesmos
5.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555699

RESUMO

Photoswitchable fluorescent proteins (FPs) have become indispensable tools for studying life sciences. mSAASoti FP, a biphotochromic FP, is an important representative of this protein family. We created a series of mSAASoti mutants in order to obtain fast photoswitchable variants with high brightness. K145P mSAASoti has the highest molar extinction coefficient of all SAASoti mutants studied; C21N/K145P/M163A switches to the dark state 36 times faster than mSAASoti, but it lost its ability to undergo green-to-red photoconversion. Finally, the C21N/K145P/F177S and C21N/K145P/M163A/F177S variants demonstrated a high photoswitching rate between both green and red forms.


Assuntos
Corantes , Proteínas Luminescentes/metabolismo , Proteínas de Fluorescência Verde/química
6.
Materials (Basel) ; 15(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35888428

RESUMO

Fluorescent Correlation Spectroscopy (FCS) allows us to determine interactions of labeled proteins or changes in the oligomeric state. The FCS method needs a low amount of fluorescent dye, near nanomolar concentrations. To control the amount of fluorescent dye, we used new photoconvertible FP SAASoti. This work is devoted to the proof of principle of using photoconvertible proteins to measure caspase enzymatic activity in a single live cell. The advantage of this approach is that partial photoconversion of the FP makes FCS measurements possible when studying enzymatic reactions. To investigate the process, in vivo we used HeLa cell line expressing the engineered FRET sensor, SAASoti-23-KFP. This FRET sensor has a cleavable (DEVD) sequence in the linker between two FPs for the detection of one of the key enzymes of apoptosis, caspase-3. Caspase-3 activity was detected by registering the increase in the fluorescent lifetimes of the sensor, whereas the diffusion coefficient of SAASoti decreased. This can be explained by an increase in the total cell viscosity during apoptosis. We can suppose that in the moment of detectible caspase-3 activity, cell structure already has crucial changes in viscosity.

7.
NMR Biomed ; 35(7): e4708, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35106848

RESUMO

Multimodality registration of optical and MR images in the same tissue volume in vivo may be enabled by MR contrast agents with an optical clearing (OC) effect. The goals of this study were to (a) investigate the effects of clinical MR contrast agent gadobutrol (GB) and its combinations as a potential OC agent assisting in fluorescence intensity (FI) imaging in vivo and (b) evaluate MRI as a tool for imaging of topical or systemic application of GB for the purpose of OC. Subcutaneous tumor xenografts expressing red fluorescent marker protein were used as disease models. MRI was performed at 1 T 1 H MRI using T1 -weighted 3D gradient-echo (T1w-3D GRE) sequences to measure time-dependent MR signal intensity changes by region of interest analysis after image segmentation. Topical application of 1.0 M or 0.7 M GB-containing OC mixture with water and dimethyl sulfoxide showed similar 30-40% increases of tumor FI during the initial 15 min. Afterwards, the OC effect of GB on FI and tumor/background FI ratio showed a decrease over time in the case of 1.0 M GB, unlike the 0.7 M GB mixture, which resulted in a steady increase of FI and tumor/background ratio for 15-60 min. The use of T1w-3D GRE MR pulse sequences showed that concentrated 1.0 M GB resulted in MR signal loss of the skin due to high magnetic susceptibility and that signal loss coincided with the OC effect. Intravenous injection of 0.3 mmol GB/kg resulted in a rapid but transient 40% increase of FI of the tumors. Overall, 1 T MRI enabled tracking of GB-containing OC compositions on the skin surface and tumor tissue, supporting the observation of a time-dependent FI increase in vivo.


Assuntos
Neoplasias , Compostos Organometálicos , Meios de Contraste , Humanos , Proteínas Luminescentes , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Imagem Óptica , Proteína Vermelha Fluorescente
8.
Int J Mol Sci ; 20(14)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373280

RESUMO

SAASoti is a unique fluorescent protein (FP) that combines properties of green-to-red photoconversion and reversible photoswitching (in its green state), without any amino acid substitutions in the wild type gene. In the present work, we investigated its ability to photoswitch between fluorescent red ('on') and dark ('off') states. Surprisingly, generated by 400 nm exposure, the red form of SAASoti (R1) does not exhibit any reversible photoswitching behavior under 550 nm illumination, while a combination of prior 470 nm and subsequent 400 nm irradiation led to the appearance of another-R2-form that can be partially photoswitched (550 nm) to the dark state, with a very fast recovery time. The phenomenon might be explained by chemical modification in the chromophore microenvironment during prior 470 nm exposure, and the resulting R2 SAASoti differs chemically from the R1 form. The suggestion is supported by the mass spectrometry analysis of the tryptic peptides before and after 470 nm light exposure, that revealed Met164 oxidation, as proceeds in another dual phototransformable FP, IrisFP.


Assuntos
Corantes/química , Proteínas Luminescentes/química , Sequência de Aminoácidos , Animais , Antozoários/metabolismo , Cor , Espectrometria de Massas , Oxirredução
9.
Sci Rep ; 8(1): 15542, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341334

RESUMO

Photoconvertible fluorescent proteins (PCFPs) are widely used as markers for the visualization of intracellular processes and for sub-diffraction single-molecule localization microscopy. Although wild type of a new photoconvertible fluorescent protein SAASoti tends to aggregate, we succeeded, via rational mutagenesis, to obtain variants that formed either tetramers or monomers. We compare two approaches: one is based on the structural similarity between SAASoti and Kaede, which helped us to identify a single point mutation (V127T) at the protein's hydrophobic interface that leads to monomerization. The other is based on a chemical modification of amino groups of SAASoti with succinic anhydride, which converts the protein aggregates into monomers. Mass-spectrometric analysis helped us to identify that the modification of a single ε-amino group of lysine K145 in the strongly charged interface AB was sufficient to convert the protein into its tetrameric form. Furthermore, site-directed mutagenesis was used to generate mutants that proved to be either monomeric or tetrameric, both capable of rapid green-to-red photoconversion. This allows SAASoti to be used as a photoconvertible fluorescent marker for in vivo cell studies.


Assuntos
Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutagênese Sítio-Dirigida , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Aminoácidos/genética , Proteínas Luminescentes/química , Espectrometria de Massas , Proteínas Recombinantes/química
10.
Sci Rep ; 8(1): 13224, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185895

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) measures fluorescence decay rate at every pixel of an image. FLIM can separate probes of the same color but different fluorescence lifetimes (FL), thus it is a promising approach for multiparameter imaging. However, available GFP-like fluorescent proteins (FP) possess a narrow range of FLs (commonly, 2.3-3.5 ns) which limits their applicability for multiparameter FLIM. Here we report a new FP probe showing both subnanosecond fluorescence lifetime and exceptional fluorescence brightness (80% of EGFP). To design this probe we applied semi-rational amino acid substitutions selection. Critical positions (Thr65, Tyr145, Phe165) were altered based on previously reported effect on FL or excited state electron transfer. The resulting EGFP triple mutant, BrUSLEE (Bright Ultimately Short Lifetime Enhanced Emitter), allows for both reliable detection of the probe and recording FL signal clearly distinguishable from that of the spectrally similar commonly used GFPs. We demonstrated high performance of this probe in multiparameter FLIM experiment. We suggest that amino acid substitutions described here lead to a significant shift in radiative and non-radiative excited state processes equilibrium.


Assuntos
Proteínas de Fluorescência Verde/análise , Evolução Molecular Direcionada , Fluorescência , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Mutação , Imagem Óptica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA