Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Internet Things J ; 9(14): 12848-12860, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35813017

RESUMO

Deep neural networks are parametrized by several thousands or millions of parameters, and have shown tremendous success in many classification problems. However, the large number of parameters makes it difficult to integrate these models into edge devices such as smartphones and wearable devices. To address this problem, knowledge distillation (KD) has been widely employed, that uses a pre-trained high capacity network to train a much smaller network, suitable for edge devices. In this paper, for the first time, we study the applicability and challenges of using KD for time-series data for wearable devices. Successful application of KD requires specific choices of data augmentation methods during training. However, it is not yet known if there exists a coherent strategy for choosing an augmentation approach during KD. In this paper, we report the results of a detailed study that compares and contrasts various common choices and some hybrid data augmentation strategies in KD based human activity analysis. Research in this area is often limited as there are not many comprehensive databases available in the public domain from wearable devices. Our study considers databases from small scale publicly available to one derived from a large scale interventional study into human activity and sedentary behavior. We find that the choice of data augmentation techniques during KD have a variable level of impact on end performance, and find that the optimal network choice as well as data augmentation strategies are specific to a dataset at hand. However, we also conclude with a general set of recommendations that can provide a strong baseline performance across databases.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 784-788, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018103

RESUMO

Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture different possible variations. This makes it difficult to use them in a clinical setting since in most health applications researchers often have to work with limited data. Less data can cause the deep learning model to over-fit. In this paper, we ask how can we use data from a different environment, different use-case, with widely differing data distributions. We exemplify this use case by using single-sensor accelerometer data from healthy subjects performing activities of daily living - ADLs (source dataset), to extract features relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson's disease classification. We train the pre-trained model using the source dataset and use it as a feature extractor. We show that the features extracted for the target dataset can be used to train an effective classification model. Our pretrained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model. We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification.


Assuntos
Doença de Parkinson , Atividades Cotidianas , Algoritmos , Marcha , Humanos , Redes Neurais de Computação
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 793-797, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018105

RESUMO

At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson's disease classification and severity assessment. An automated, stable, and accurate method to evaluate Parkinson's would be significant in streamlining diagnoses of patients and providing families more time for corrective measures. We propose a methodology which incorporates TDA into analyzing Parkinson's disease postural shifts data through the representation of persistence images. Studying the topology of a system has proven to be invariant to small changes in data and has been shown to perform well in discrimination tasks. The contributions of the paper are twofold. We propose a method to 1) classify healthy patients from those afflicted by disease and 2) diagnose the severity of disease. We explore the use of the proposed method in an application involving a Parkinson's disease dataset comprised of healthy-elderly, healthy-young and Parkinson's disease patients. Our code is available at https://github.com/itsmeafra/Sublevel-Set-TDA.


Assuntos
Doença de Parkinson , Idoso , Humanos , Aprendizado de Máquina , Análise de Regressão
4.
Artigo em Inglês | MEDLINE | ID: mdl-32995068

RESUMO

Topological features such as persistence diagrams and their functional approximations like persistence images (PIs) have been showing substantial promise for machine learning and computer vision applications. This is greatly attributed to the robustness topological representations provide against different types of physical nuisance variables seen in real-world data, such as view-point, illumination, and more. However, key bottlenecks to their large scale adoption are computational expenditure and difficulty incorporating them in a differentiable architecture. We take an important step in this paper to mitigate these bottlenecks by proposing a novel one-step approach to generate PIs directly from the input data. We design two separate convolutional neural network architectures, one designed to take in multi-variate time series signals as input and another that accepts multi-channel images as input. We call these networks Signal PI-Net and Image PI-Net respectively. To the best of our knowledge, we are the first to propose the use of deep learning for computing topological features directly from data. We explore the use of the proposed PI-Net architectures on two applications: human activity recognition using tri-axial accelerometer sensor data and image classification. We demonstrate the ease of fusion of PIs in supervised deep learning architectures and speed up of several orders of magnitude for extracting PIs from data. Our code is available at https://github.com/anirudhsom/PI-Net.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3096-3100, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268966

RESUMO

In this paper, we propose a computational framework using high-dimensional shape descriptors of reconstructed attractors of center-of-pressure (CoP) tracings collected from subjects with Parkinson's disease while performing dynamical posture shifts, to quantitatively assess balance impairment. Using a dataset collected from 60 subjects, we demonstrated that the proposed method outperforms traditional methods, such as dynamical shift indices and use of chaotic invariants, in assessment of balance impairment.


Assuntos
Biologia Computacional , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Equilíbrio Postural , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA