Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106165

RESUMO

The mitochondrial single-stranded DNA (ssDNA) binding protein, mtSSB or SSBP1, binds to ssDNA to prevent secondary structures of DNA that could impede downstream replication or repair processes. Clinical mutations in the SSBP1 gene have been linked to a range of mitochondrial disorders affecting nearly all organs and systems. Yet, the molecular determinants governing the interaction between mtSSB and ssDNA have remained elusive. Similarly, the structural interaction between mtSSB and other replisome components, such as the mitochondrial DNA polymerase, Polγ, has been minimally explored. Here, we determined a 1.9-Å X-ray crystallography structure of the human mtSSB bound to ssDNA. This structure uncovered two distinct DNA binding sites, a low-affinity site and a high-affinity site, confirmed through site-directed mutagenesis. The high-affinity binding site encompasses a clinically relevant residue, R38, and a highly conserved DNA base stacking residue, W84. Employing cryo-electron microscopy, we confirmed the tetrameric assembly in solution and capture its interaction with Polγ. Finally, we derived a model depicting modes of ssDNA wrapping around mtSSB and a region within Polγ that mtSSB binds.

2.
Biochemistry ; 62(1): 85-94, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36534405

RESUMO

Bacteria have evolved to utilize alternative organosulfur sources when sulfur is limiting. The SsuE/SsuD and MsuE/MsuD enzymes expressed when sulfur sources are restricted, are responsible for providing specific bacteria with sulfur in the form of alkanesulfonates. In this study, we evaluated why two structurally and functionally similar FMNH2-dependent monooxygenase enzymes (MsuD and SsuD) are needed for the acquisition of alkanesulfonates in some bacteria. In desulfonation assays, MsuD was able to utilize the entire range of alkanesulfonates (C1-C10). However, SsuD was not able to utilize smaller alkanesulfonate substrates. Interestingly, SsuD had a similar binding affinity for methanesulfonate (MES) (15 ± 1 µM) as MsuD (12 ± 1 µM) even though SsuD was not able to catalyze the desulfonation of the MES substrate. SsuD and MsuD showed decreased proteolytic susceptibility in the presence of FMNH2 with MES and octanesulfonate (OCS). Tighter loop closure was observed for the MsuD/FMNH2 complex with MES and OCS compared to SsuD under comparable conditions. Analysis of the SsuD/FMNH2/MES structure using accelerated molecular dynamics simulations found three different conformations for MES, demonstrating the instability of the bound structure. Even when MES was bound in a similar fashion to OCS within the active site, the smaller alkane chain resulted in a shift of FMNH2 so that it was no longer in a position to catalyze the desulfonation of MES. The active site of SsuD requires a longer alkane chain to maintain the appropriate architecture for desulfonation.


Assuntos
Proteínas de Escherichia coli , Domínio Catalítico , Proteínas de Escherichia coli/química , Oxigenases de Função Mista/metabolismo , Alcanossulfonatos/química , Alcanossulfonatos/metabolismo , Enxofre
3.
Biochemistry ; 59(38): 3582-3593, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32881481

RESUMO

Substrate-induced conformational changes present in alkanesulfonate monooxygenase (SsuD) are crucial to catalysis and lead to distinct interactions between a dynamic loop region and the active site. Accelerated molecular dynamics (aMD) simulations have been carried out to examine this potential correlation by studying wild-type SsuD and variant enzymes bound with different combinations of reduced flavin (FMNH2), C4a-peroxyflavin intermediate (FMNOO-), and octanesulfonate (OCS). Three distinct mobile loop conformations were identified: "open", "closed", and "semiclosed". The substrate-free SsuD system possessed a wide opening capable of providing full access for substrates to enter the active site. Upon binding FMNH2, SsuD adopts a closed conformation that would prevent unproductive oxidation reactions in the absence of OCS. Two salt bridges, Asp111-Arg263 and Glu205-Arg271, were identified as particularly important in maintaining the closed conformation. Experimental substitution of Arg271 to Ala did not alter the catalytic activity, but the variant in the presence of reduced flavin was more susceptible to proteolytic digestion compared to wild-type. With both FMNH2 and OCS bound in SsuD, a second conformation was formed dependent upon a favorable π-π interaction between His124 and Phe261. Accordingly, there was no observed activity with the F261W SsuD variant in steady-state kinetic assays. This semiclosed conformation may be more appropriate for accepting O2 into the binding pocket and/or may properly orient the active site for the ensuing oxygenolytic cleavage. Finally, simulations of SsuD simultaneously bound with FMNOO- and OCS found an open mobile loop region that suggests alternative flavin intermediates may participate in the reaction mechanism.


Assuntos
Proteínas de Escherichia coli/química , Oxigenases de Função Mista/química , Ácidos Alcanossulfônicos/química , Ácidos Alcanossulfônicos/metabolismo , Domínio Catalítico , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Flavinas/química , Flavinas/metabolismo , Cinética , Oxigenases de Função Mista/metabolismo , Modelos Químicos , Simulação de Dinâmica Molecular , Oxirredução , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA