Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Homeopathy ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38574753

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is a serious public health concern worldwide. The European Union requires a reduction in the use of antibiotics by 50% by 2030, with separate regulations on organic production that give preference to homeopathy and phytotherapy in organic farms before the use of conventional medicines (including antibiotics). We have therefore designed a two-phased project whose overarching aim is to investigate the potential role of homeopathic medicinal products (HMPs) in combating AMR in turkeys (the HOMAMR project): a two-cohort feasibility study using turkey-farm data that have been collected and analyzed retrospectively, followed by a prospective two-cohort study in turkey farms that would examine the impact of HMPs on changing antibiotic use. OBJECTIVE: The objective of this paper is to describe the protocol for the first phase of HOMAMR, which is a study under field conditions to assess the feasibility of collecting data retrospectively about turkeys that have been managed conventionally only or with HMPs. METHODS: Surveys performed on farms in Germany and Austria, including interviews with consenting farmers, will determine the feasibility of comparing retrospectively gathered data on antibiotic use and performance/production data in two cohorts of turkeys: (1) homeopathic treatment with conventional care (antibiotics) added if necessary or (2) conventional care (antibiotics) only. Co-primary outcomes to be studied are the amount of antimicrobial use and production period-related mortality. In addition, other production/performance parameters will be compared between the two treated cohorts. CONCLUSION: To our knowledge, this is the first feasibility study on the treatment of turkeys using homeopathy, and whose retrospectively obtained data will inform a prospective study that would examine the impact of HMPs on antibiotic use in commercial turkey raising, fattening and breeding production.

2.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38365273

RESUMO

Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions. In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI. Combining CCI with widefield cortical imaging provides us with unprecedented access to characterize network connectivity changes throughout the entire injured cortex over time. Our data demonstrate that CCI profoundly disrupts functional connectivity immediately after injury, followed by partial recovery over 3 weeks. Examining discrete periods of locomotion and stillness reveals that CCI alters functional connectivity and reduces theta power only during periods of behavioral stillness. Together, these findings demonstrate that TBI causes dynamic, behavioral state-dependent changes in functional connectivity and ECoG activity across the cortex.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Camundongos , Animais , Adolescente , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Córtex Cerebral/diagnóstico por imagem , Cognição
3.
J Neurosci ; 43(8): 1422-1440, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36717229

RESUMO

Infantile and epileptic spasms syndrome (IESS) is a childhood epilepsy syndrome characterized by infantile or late-onset spasms, abnormal neonatal EEG, and epilepsy. Few treatments exist for IESS, clinical outcomes are poor, and the molecular and circuit-level etiologies of IESS are not well understood. Multiple human IESS risk genes are linked to Wnt/ß-catenin signaling, a pathway that controls developmental transcriptional programs and promotes glutamatergic excitation via ß-catenin's role as a synaptic scaffold. We previously showed that deleting adenomatous polyposis coli (APC), a component of the ß-catenin destruction complex, in excitatory neurons (APC cKO mice, APCfl/fl x CaMKIIαCre) increased ß-catenin levels in developing glutamatergic neurons and led to infantile behavioral spasms, abnormal neonatal EEG, and adult epilepsy. Here, we tested the hypothesis that the development of GABAergic interneurons (INs) is disrupted in APC cKO male and female mice. IN dysfunction is implicated in human IESS, is a feature of other rodent models of IESS, and may contribute to the manifestation of spasms and seizures. We found that parvalbumin-positive INs (PV+ INs), an important source of cortical inhibition, were decreased in number, underwent disproportionate developmental apoptosis, and had altered dendrite morphology at P9, the peak of behavioral spasms. PV+ INs received excessive excitatory input, and their intrinsic ability to fire action potentials was reduced at all time points examined (P9, P14, P60). Subsequently, GABAergic transmission onto pyramidal neurons was uniquely altered in the somatosensory cortex of APC cKO mice at all ages, with both decreased IPSC input at P14 and enhanced IPSC input at P9 and P60. These results indicate that inhibitory circuit dysfunction occurs in APC cKOs and, along with known changes in excitation, may contribute to IESS-related phenotypes.SIGNIFICANCE STATEMENT Infantile and epileptic spasms syndrome (IESS) is a devastating epilepsy with limited treatment options and poor clinical outcomes. The molecular, cellular, and circuit disruptions that cause infantile spasms and seizures are largely unknown, but inhibitory GABAergic interneuron dysfunction has been implicated in rodent models of IESS and may contribute to human IESS. Here, we use a rodent model of IESS, the APC cKO mouse, in which ß-catenin signaling is increased in excitatory neurons. This results in altered parvalbumin-positive GABAergic interneuron development and GABAergic synaptic dysfunction throughout life, showing that pathology arising in excitatory neurons can initiate long-term interneuron dysfunction. Our findings further implicate GABAergic dysfunction in IESS, even when pathology is initiated in other neuronal types.


Assuntos
Polipose Adenomatosa do Colo , Epilepsia , Espasmos Infantis , Masculino , Animais , Feminino , Camundongos , Humanos , Criança , Espasmos Infantis/metabolismo , Parvalbuminas/metabolismo , Camundongos Knockout , beta Catenina/metabolismo , Interneurônios/fisiologia , Convulsões , Epilepsia/metabolismo , Espasmo/metabolismo , Espasmo/patologia , Polipose Adenomatosa do Colo/metabolismo , Polipose Adenomatosa do Colo/patologia
4.
Nat Neurosci ; 25(5): 607-616, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35484406

RESUMO

Astrocytes are glial cells that interact with neuronal synapses via their distal processes, where they remove glutamate and potassium (K+) from the extracellular space following neuronal activity. Astrocyte clearance of both glutamate and K+ is voltage dependent, but astrocyte membrane potential (Vm) is thought to be largely invariant. As a result, these voltage dependencies have not been considered relevant to astrocyte function. Using genetically encoded voltage indicators to enable the measurement of Vm at peripheral astrocyte processes (PAPs) in mice, we report large, rapid, focal and pathway-specific depolarizations in PAPs during neuronal activity. These activity-dependent astrocyte depolarizations are driven by action potential-mediated presynaptic K+ efflux and electrogenic glutamate transporters. We find that PAP depolarization inhibits astrocyte glutamate clearance during neuronal activity, enhancing neuronal activation by glutamate. This represents a novel class of subcellular astrocyte membrane dynamics and a new form of astrocyte-neuron interaction.


Assuntos
Astrócitos , Neurônios , Animais , Astrócitos/fisiologia , Ácido Glutâmico , Camundongos , Neuroglia , Neurônios/fisiologia , Sinapses/fisiologia
5.
JCI Insight ; 52019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31038473

RESUMO

Traumatic brain injury (TBI) causes cortical dysfunction and can lead to post-traumatic epilepsy. Multiple studies demonstrate that GABAergic inhibitory network function is compromised following TBI, which may contribute to hyperexcitability and motor, behavioral, and cognitive deficits. Preserving the function of GABAergic interneurons, therefore, is a rational therapeutic strategy to preserve cortical function after TBI and prevent long-term clinical complications. Here, we explored an approach based on the ketogenic diet, a neuroprotective and anticonvulsant dietary therapy which results in reduced glycolysis and increased ketosis. Utilizing a pharmacologic inhibitor of glycolysis (2-deoxyglucose, or 2-DG), we found that acute in vitro application of 2-DG decreased the excitability of excitatory neurons, but not inhibitory interneurons, in cortical slices from naïve mice. Employing the controlled cortical impact (CCI) model of TBI in mice, we found that in vitro 2-DG treatment rapidly attenuated epileptiform activity seen in acute cortical slices 3 to 5 weeks after TBI. One week of in vivo 2-DG treatment immediately after TBI prevented the development of epileptiform activity, restored excitatory and inhibitory synaptic activity, and attenuated the loss of parvalbumin-expressing inhibitory interneurons. In summary, 2-DG may have therapeutic potential to restore network function following TBI.


Assuntos
Antimetabólitos/farmacologia , Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/efeitos dos fármacos , Excitabilidade Cortical/efeitos dos fármacos , Desoxiglucose/farmacologia , Epilepsia Pós-Traumática/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Animais , Contusão Encefálica/metabolismo , Córtex Cerebral/metabolismo , Dieta Cetogênica , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Inibição Neural/efeitos dos fármacos , Parvalbuminas/metabolismo
6.
J Neurosci ; 39(19): 3611-3626, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30846615

RESUMO

Developing cortical GABAergic interneurons rely on genetic programs, neuronal activity, and environmental cues to construct inhibitory circuits during early postnatal development. Disruption of these events can cause long-term changes in cortical inhibition and may be involved in neurological disorders associated with inhibitory circuit dysfunction. We hypothesized that tonic glutamate signaling in the neonatal cortex contributes to, and is necessary for, the maturation of cortical interneurons. To test this hypothesis, we used mice of both sexes to quantify extracellular glutamate concentrations in the cortex during development, measure ambient glutamate-mediated activation of developing cortical interneurons, and manipulate tonic glutamate signaling using subtype-specific NMDA receptor antagonists in vitro and in vivo We report that ambient glutamate levels are high (≈100 nm) in the neonatal cortex and decrease (to ≈50 nm) during the first weeks of life, coincident with increases in astrocytic glutamate uptake. Consistent with elevated ambient glutamate, putative parvalbumin-positive interneurons in the cortex (identified using G42:GAD1-eGFP reporter mice) exhibit a transient, tonic NMDA current at the end of the first postnatal week. GluN2C/GluN2D-containing NMDA receptors mediate the majority of this current and contribute to the resting membrane potential and intrinsic properties of developing putative parvalbumin interneurons. Pharmacological blockade of GluN2C/GluN2D-containing NMDA receptors in vivo during the period of tonic interneuron activation, but not later, leads to lasting decreases in interneuron morphological complexity and causes deficits in cortical inhibition later in life. These results demonstrate that dynamic ambient glutamate signaling contributes to cortical interneuron maturation via tonic activation of GluN2C/GluN2D-containing NMDA receptors.SIGNIFICANCE STATEMENT Inhibitory GABAergic interneurons make up 20% of cortical neurons and are critical to controlling cortical network activity. Dysfunction of cortical inhibition is associated with multiple neurological disorders, including epilepsy. Establishing inhibitory cortical networks requires in utero proliferation, differentiation, and migration of immature GABAergic interneurons, and subsequent postnatal morphological maturation and circuit integration. Here, we demonstrate that ambient glutamate provides tonic activation of immature, putative parvalbumin-positive GABAergic interneurons in the neonatal cortex via high-affinity NMDA receptors. When this activation is blocked, GABAergic interneuron maturation is disrupted, and cortical networks exhibit lasting abnormal hyperexcitability. We conclude that temporally precise activation of developing cortical interneurons by ambient glutamate is critically important for establishing normal cortical inhibition.


Assuntos
Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Sensório-Motor/metabolismo , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Feminino , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Córtex Sensório-Motor/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA