Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cancers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454906

RESUMO

The hostile tumor microenvironment (TME) is a major challenge for the treatment of solid tumors with T-cell receptor (TCR)-modified T-cells (TCR-Ts), as it negatively influences T-cell efficacy, fitness, and persistence. These negative influences are caused, among others, by the inhibitory checkpoint PD-1/PD-L1 axis. The Preferentially Expressed Antigen in Melanoma (PRAME) is a highly relevant cancer/testis antigen for TCR-T immunotherapy due to broad expression in multiple solid cancer indications. A TCR with high specificity and sensitivity for PRAME was isolated from non-tolerized T-cell repertoires and introduced into T-cells alongside a chimeric PD1-41BB receptor, consisting of the natural extracellular domain of PD-1 and the intracellular signaling domain of 4-1BB, turning an inhibitory pathway into a T-cell co-stimulatory pathway. The addition of PD1-41BB to CD8+ T-cells expressing the transgenic PRAME-TCR enhanced IFN-γ secretion, improved cytotoxic capacity, and prevented exhaustion upon repetitive re-challenge with tumor cells in vitro without altering the in vitro safety profile. Furthermore, a single dose of TCR-Ts co-expressing PD1-41BB was sufficient to clear a hard-to-treat melanoma xenograft in a mouse model, whereas TCR-Ts without PD1-41BB could not eradicate the PD-L1-positive tumors. This cutting-edge strategy supports development efforts to provide more effective TCR-T immunotherapies for the treatment of solid tumors.

2.
Sci Signal ; 14(697)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429382

RESUMO

Chimeric antigen receptor (CAR)-modified T cell therapy is effective in treating lymphomas, leukemias, and multiple myeloma in which the tumor cells express high amounts of target antigen. However, achieving durable remission for these hematological malignancies and extending CAR T cell therapy to patients with solid tumors will require receptors that can recognize and eliminate tumor cells with a low density of target antigen. Although CARs were designed to mimic T cell receptor (TCR) signaling, TCRs are at least 100-fold more sensitive to antigen. To design a CAR with improved antigen sensitivity, we directly compared TCR and CAR signaling in primary human T cells. Global phosphoproteomic analysis revealed that key T cell signaling proteins-such as CD3δ, CD3ε, and CD3γ, which comprise a portion of the T cell co-receptor, as well as the TCR adaptor protein LAT-were either not phosphorylated or were only weakly phosphorylated by CAR stimulation. Modifying a commonplace 4-1BB/CD3ζ CAR sequence to better engage CD3ε and LAT using embedded CD3ε or GRB2 domains resulted in enhanced T cell activation in vitro in settings of a low density of antigen, and improved efficacy in in vivo models of lymphoma, leukemia, and breast cancer. These CARs represent examples of alterations in receptor design that were guided by in-depth interrogation of T cell signaling.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Mieloma Múltiplo/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Transdução de Sinais
3.
J Immunother Cancer ; 9(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771892

RESUMO

BACKGROUND: The cancer-testis antigen MAGE-A4 is an attractive target for T-cell-based immunotherapy, especially for indications with unmet clinical need like non-small cell lung or triple-negative breast cancer. METHODS: An unbiased CD137-based sorting approach was first used to identify an immunogenic MAGE-A4-derived epitope (GVYDGREHTV) that was properly processed and presented on human leukocyte antigen (HLA)-A2 molecules encoded by the HLA-A*02:01 allele. To isolate high-avidity T cells via subsequent multimer sorting, an in vitro priming approach using HLA-A2-negative donors was conducted to bypass central tolerance to this self-antigen. Pre-clinical parameters of safety and activity were assessed in a comprehensive set of in vitro and in vivo studies. RESULTS: A MAGE-A4-reactive, HLA-A2-restricted T-cell receptor (TCR) was isolated from primed T cells of an HLA-A2-negative donor. The respective TCR-T-cell (TCR-T) product bbT485 was demonstrated pre-clinically to have a favorable safety profile and superior in vivo potency compared with TCR-Ts expressing a TCR derived from a tolerized T-cell repertoire to self-antigens. This natural high-avidity TCR was found to be CD8 co-receptor independent, allowing effector functions to be elicited in transgenic CD4+ T helper cells. These CD4+ TCR-Ts supported an anti-tumor response by direct killing of MAGE-A4-positive tumor cells and upregulated hallmarks associated with helper function, such as CD154 expression and release of key cytokines on tumor-specific stimulation. CONCLUSION: The extensive pre-clinical assessment of safety and in vivo potency of bbT485 provide the basis for its use in TCR-T immunotherapy studies. The ability of this non-mutated high-avidity, co-receptor-independent TCR to activate CD8+ and CD4+ T cells could potentially provide enhanced cellular responses in the clinical setting through the induction of functionally diverse T-cell subsets that goes beyond what is currently tested in the clinic.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/transplante , Imunoterapia Adotiva , Proteínas de Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Células A549 , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Técnicas de Cocultura , Citotoxicidade Imunológica , Feminino , Células HEK293 , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Humanos , Epitopos Imunodominantes , Células K562 , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Fenótipo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Signal ; 11(544)2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131370

RESUMO

Chimeric antigen receptors (CARs) link an antigen recognition domain to intracellular signaling domains to redirect T cell specificity and function. T cells expressing CARs with CD28/CD3ζ or 4-1BB/CD3ζ signaling domains are effective at treating refractory B cell malignancies but exhibit differences in effector function, clinical efficacy, and toxicity that are assumed to result from the activation of divergent signaling cascades. We analyzed stimulation-induced phosphorylation events in primary human CD8+ CD28/CD3ζ and 4-1BB/CD3ζ CAR T cells by mass spectrometry and found that both CAR constructs activated similar signaling intermediates. Stimulation of CD28/CD3ζ CARs activated faster and larger-magnitude changes in protein phosphorylation, which correlated with an effector T cell-like phenotype and function. In contrast, 4-1BB/CD3ζ CAR T cells preferentially expressed T cell memory-associated genes and exhibited sustained antitumor activity against established tumors in vivo. Mutagenesis of the CAR CD28 signaling domain demonstrated that the increased CD28/CD3ζ CAR signal intensity was partly related to constitutive association of Lck with this domain in CAR complexes. Our data show that CAR signaling pathways cannot be predicted solely by the domains used to construct the receptor and that signal strength is a key determinant of T cell fate. Thus, tailoring CAR design based on signal strength may lead to improved clinical efficacy and reduced toxicity.


Assuntos
Fosfoproteínas/análise , Proteômica/métodos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Animais , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Linfoma de Burkitt/terapia , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Células K562 , Cinética , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fosfoproteínas/metabolismo , Análise de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Blood ; 131(1): 108-120, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29051183

RESUMO

Leukemia relapse remains the major cause of allogeneic hematopoietic stem cell transplantation (HCT) failure, and the prognosis for patients with post-HCT relapse is poor. There is compelling evidence that potent selective antileukemic effects can be delivered by donor T cells specific for particular minor histocompatibility (H) antigens. Thus, T-cell receptors (TCRs) isolated from minor H antigen-specific T cells represent an untapped resource for developing targeted T-cell immunotherapy to manage post-HCT leukemic relapse. Recognizing that several elements may be crucial to the efficacy and safety of engineered T-cell immunotherapy, we developed a therapeutic transgene with 4 components: (1) a TCR specific for the hematopoietic-restricted, leukemia-associated minor H antigen, HA-1; (2) a CD8 coreceptor to promote function of the class I-restricted TCR in CD4+ T cells; (3) an inducible caspase 9 safety switch to enable elimination of the HA-1 TCR T cells in case of toxicity; and (4) a CD34-CD20 epitope to facilitate selection of the engineered cell product and tracking of transferred HA-1 TCR T cells. The T-cell product includes HA-1 TCR CD4+ T cells to augment the persistence and function of the HA-1 TCR CD8+ T cells and includes only memory T cells; naive T cells are excluded to limit the potential for alloreactivity mediated by native TCR coexpressed by HA-1 TCR T cells. We describe the development of this unique immunotherapy and demonstrate functional responses to primary leukemia by CD4+ and CD8+ T cells transduced with a lentiviral vector incorporating the HA-1 TCR transgene construct.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunoterapia , Leucemia/terapia , Linfócitos T/imunologia , Células Cultivadas , Humanos , Leucemia/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Oligopeptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
6.
Nature ; 545(7652): 98-102, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445461

RESUMO

The relative contribution of the effector molecules produced by T cells to tumour rejection is unclear, but interferon-γ (IFNγ) is critical in most of the analysed models. Although IFNγ can impede tumour growth by acting directly on cancer cells, it must also act on the tumour stroma for effective rejection of large, established tumours. However, which stroma cells respond to IFNγ and by which mechanism IFNγ contributes to tumour rejection through stromal targeting have remained unknown. Here we use a model of IFNγ induction and an IFNγ-GFP fusion protein in large, vascularized tumours growing in mice that express the IFNγ receptor exclusively in defined cell types. Responsiveness to IFNγ by myeloid cells and other haematopoietic cells, including T cells or fibroblasts, was not sufficient for IFNγ-induced tumour regression, whereas responsiveness of endothelial cells to IFNγ was necessary and sufficient. Intravital microscopy revealed IFNγ-induced regression of the tumour vasculature, resulting in arrest of blood flow and subsequent collapse of tumours, similar to non-haemorrhagic necrosis in ischaemia and unlike haemorrhagic necrosis induced by tumour necrosis factor. The early events of IFNγ-induced tumour ischaemia resemble non-apoptotic blood vessel regression during development, wound healing or IFNγ-mediated, pregnancy-induced remodelling of uterine arteries. A better mechanistic understanding of how solid tumours are rejected may aid the design of more effective protocols for adoptive T-cell therapy.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Hipóxia Celular/imunologia , Interferon gama/imunologia , Isquemia/imunologia , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Remodelação Vascular , Animais , Vasos Sanguíneos/imunologia , Vasos Sanguíneos/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Feminino , Interferon gama/biossíntese , Microscopia Intravital , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Necrose , Neoplasias/metabolismo , Neoplasias/patologia , Receptores de Interferon/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo , Especificidade por Substrato , Cicatrização , Receptor de Interferon gama
7.
Clin Cancer Res ; 23(12): 3061-3071, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852699

RESUMO

Purpose: This study examines cell surface ROR1 expression in human tumors and normal tissues. ROR1 is considered a promising target for cancer therapy due to putative tumor-specific expression, and multiple groups are developing antibodies and/or chimeric antigen receptor-modified T cells to target ROR1. On-target, off-tumor toxicity is a challenge for most nonmutated tumor antigens; however, prior studies suggest that ROR1 is absent on most normal tissues.Experimental Design: Our studies show that published antibodies lack sensitivity to detect endogenous levels of cell surface ROR1 by immunohistochemistry (IHC) in formalin-fixed, paraffin-embedded tissues. We developed a ROR1-specific monoclonal antibody (mAb) targeting the carboxy-terminus of ROR1 and evaluated its specificity and sensitivity in IHC.Results: The 6D4 mAb is a sensitive and specific reagent to detect cell surface ROR1 by IHC. The data show that ROR1 is homogenously expressed on a subset of ovarian cancer, triple-negative breast cancer, and lung adenocarcinomas. Contrary to previous findings, we found ROR1 is expressed on several normal tissues, including parathyroid; pancreatic islets; and regions of the esophagus, stomach, and duodenum. The 6D4 mAb recognizes rhesus ROR1, and ROR1 expression was similar in human and macaque tissues, suggesting that the macaque is a suitable model to evaluate safety of ROR1-targeted therapies.Conclusions: ROR1 is a promising immunotherapeutic target in many epithelial tumors; however, high cell surface ROR1 expression in multiple normal tissues raises concerns for on-target off-tumor toxicities. Clinical translation of ROR1-targeted therapies warrants careful monitoring of toxicities to normal organs and may require strategies to ensure patient safety. Clin Cancer Res; 23(12); 3061-71. ©2016 AACR.


Assuntos
Carcinoma/tratamento farmacológico , Carcinoma/genética , Imunoterapia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Anticorpos Monoclonais/imunologia , Carcinoma/imunologia , Carcinoma/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Terapia de Alvo Molecular , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/imunologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/isolamento & purificação , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
8.
J Clin Invest ; 126(11): 4262-4272, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27760047

RESUMO

The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies.


Assuntos
Agamaglobulinemia/tratamento farmacológico , Antígenos CD19/imunologia , Linfócitos B/imunologia , Cetuximab/farmacologia , Depleção Linfocítica , Linfócitos T/imunologia , Agamaglobulinemia/imunologia , Agamaglobulinemia/patologia , Animais , Linfócitos B/patologia , Feminino , Camundongos , Linfócitos T/patologia
9.
J Clin Invest ; 126(6): 2123-38, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27111235

RESUMO

BACKGROUND: T cells that have been modified to express a CD19-specific chimeric antigen receptor (CAR) have antitumor activity in B cell malignancies; however, identification of the factors that determine toxicity and efficacy of these T cells has been challenging in prior studies in which phenotypically heterogeneous CAR-T cell products were prepared from unselected T cells. METHODS: We conducted a clinical trial to evaluate CD19 CAR-T cells that were manufactured from defined CD4+ and CD8+ T cell subsets and administered in a defined CD4+:CD8+ composition to adults with B cell acute lymphoblastic leukemia after lymphodepletion chemotherapy. RESULTS: The defined composition product was remarkably potent, as 27 of 29 patients (93%) achieved BM remission, as determined by flow cytometry. We established that high CAR-T cell doses and tumor burden increase the risks of severe cytokine release syndrome and neurotoxicity. Moreover, we identified serum biomarkers that allow testing of early intervention strategies in patients at the highest risk of toxicity. Risk-stratified CAR-T cell dosing based on BM disease burden decreased toxicity. CD8+ T cell-mediated anti-CAR transgene product immune responses developed after CAR-T cell infusion in some patients, limited CAR-T cell persistence, and increased relapse risk. Addition of fludarabine to the lymphodepletion regimen improved CAR-T cell persistence and disease-free survival. CONCLUSION: Immunotherapy with a CAR-T cell product of defined composition enabled identification of factors that correlated with CAR-T cell expansion, persistence, and toxicity and facilitated design of lymphodepletion and CAR-T cell dosing strategies that mitigated toxicity and improved disease-free survival. TRIAL REGISTRATION: ClinicalTrials.gov NCT01865617. FUNDING: R01-CA136551; Life Science Development Fund; Juno Therapeutics; Bezos Family Foundation.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Idoso , Relação CD4-CD8 , Intervalo Livre de Doença , Humanos , Imunoterapia Adotiva/efeitos adversos , Depleção Linfocítica/métodos , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Subpopulações de Linfócitos T/transplante , Carga Tumoral/imunologia , Adulto Jovem
10.
Semin Immunol ; 28(1): 28-34, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26976826

RESUMO

Adoptive transfer of primary (unmodified) or genetically engineered antigen-specific T cells has demonstrated astonishing clinical results in the treatment of infections and some malignancies. Besides the definition of optimal targets and antigen receptors, the differentiation status of transferred T cells is emerging as a crucial parameter for generating cell products with optimal efficacy and safety profiles. Long-living memory T cells subdivide into phenotypically as well as functionally different subsets (e.g. central memory, effector memory, tissue-resident memory T cells). This diversification process is crucial for effective immune protection, with probably distinct dependencies on the presence of individual subsets dependent on the disease to which the immune response is directed as well as its organ location. Adoptive T cell therapy intends to therapeutically transfer defined T cell immunity into patients. Efficacy of this approach often requires long-term maintenance of transferred cells, which depends on the presence and persistence of memory T cells. However, engraftment and survival of highly differentiated memory T cell subsets upon adoptive transfer is still difficult to achieve. Therefore, the recent observation that a distinct subset of weakly differentiated memory T cells shows all characteristics of adult tissue stem cells and can reconstitute all types of effector and memory T cell subsets, became highly relevant. We here review our current understanding of memory subset formation and T cell subset purification, and its implications for adoptive immunotherapy.


Assuntos
Memória Imunológica , Imunoterapia Adotiva/métodos , Infecções/terapia , Neoplasias/terapia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Células-Tronco Adultas/fisiologia , Animais , Diferenciação Celular , Separação Celular , Sobrevivência Celular , Humanos , Infecções/imunologia , Neoplasias/imunologia , Subpopulações de Linfócitos T/transplante , Linfócitos T/transplante
11.
Nat Biotechnol ; 34(4): 430-4, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26900664

RESUMO

Adoptive immunotherapy with genetically engineered T cells has the potential to treat cancer and other diseases. The introduction of Strep-tag II sequences into specific sites in synthetic chimeric antigen receptors or natural T-cell receptors of diverse specificities provides engineered T cells with a marker for identification and rapid purification, a method for tailoring spacer length of chimeric receptors for optimal function, and a functional element for selective antibody-coated, microbead-driven, large-scale expansion. These receptor designs facilitate cGMP manufacturing of pure populations of engineered T cells for adoptive T-cell therapies and enable in vivo tracking and retrieval of transferred cells for downstream research applications.


Assuntos
Engenharia Genética/métodos , Imunoterapia Adotiva/métodos , Oligopeptídeos/genética , Receptores de Antígenos de Linfócitos T , Linfócitos T/química , Linfócitos T/citologia , Animais , Rastreamento de Células , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
12.
Cancer Immunol Res ; 3(2): 206-16, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25355068

RESUMO

Genetic engineering of T cells for adoptive transfer by introducing a tumor-targeting chimeric antigen receptor (CAR) is a new approach to cancer immunotherapy. A challenge for the field is to define cell surface molecules that are both preferentially expressed on tumor cells and can be safely targeted with T cells. The orphan tyrosine kinase receptor ROR1 is a candidate target for T-cell therapy with CAR-modified T cells (CAR-T cells) because it is expressed on the surface of many lymphatic and epithelial malignancies and has a putative role in tumor cell survival. The cell surface isoform of ROR1 is expressed in embryogenesis but absent in adult tissues except for B-cell precursors and low levels of transcripts in adipocytes, pancreas, and lung. ROR1 is highly conserved between humans and macaques and has a similar pattern of tissue expression. To determine if low-level ROR1 expression on normal cells would result in toxicity or adversely affect CAR-T cell survival and/or function, we adoptively transferred autologous ROR1 CAR-T cells into nonhuman primates. ROR1 CAR-T cells did not cause overt toxicity to normal organs and accumulated in bone marrow and lymph node sites, where ROR1-positive B cells were present. The findings support the clinical evaluation of ROR1 CAR-T cells for ROR1(+) malignancies and demonstrate the utility of nonhuman primates for evaluating the safety of immunotherapy with engineered T cells specific for tumor-associated molecules that are homologous between humans and nonhuman primates.


Assuntos
Imunoterapia Adotiva/efeitos adversos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Linfócitos T/imunologia , Animais , Movimento Celular/imunologia , Sobrevivência Celular/imunologia , Citocinas/sangue , Engenharia Genética/métodos , Vetores Genéticos , Humanos , Imunoterapia Adotiva/métodos , Macaca mulatta , Modelos Animais , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Retroviridae/genética , Transdução Genética
13.
Cancer Immunol Res ; 3(2): 125-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25212991

RESUMO

The use of synthetic chimeric antigen receptors (CAR) to redirect T cells to recognize tumor provides a powerful new approach to cancer immunotherapy; however, the attributes of CARs that ensure optimal in vivo tumor recognition remain to be defined. Here, we analyze the influence of length and composition of IgG-derived extracellular spacer domains on the function of CARs. Our studies demonstrate that CD19-CARs with a long spacer from IgG4 hinge-CH2-CH3 are functional in vitro but lack antitumor activity in vivo due to interaction between the Fc domain within the spacer and the Fc receptor-bearing myeloid cells, leading to activation-induced T-cell death. We demonstrate that in vivo persistence and antitumor effects of CAR-T cells with a long spacer can be restored by modifying distinct regions in the CH2 domain that are essential for Fc receptor binding. Our studies demonstrate that modifications that abrogate binding to Fc receptors are crucial for CARs in which a long spacer is obligatory for tumor recognition as shown here for a ROR1-specific CAR. These results demonstrate that the length and composition of the extracellular spacer domain that lacks intrinsic signaling function can be decisive in the design of CARs for optimal in vivo activity.


Assuntos
Linfoma de Burkitt/terapia , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Antígenos CD19/imunologia , Linfoma de Burkitt/imunologia , Morte Celular/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Engenharia Genética/métodos , Vetores Genéticos , Humanos , Imunoglobulina G/imunologia , Imunofenotipagem/métodos , Lentivirus/genética , Pulmão/imunologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos NOD , Camundongos SCID , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/imunologia , Transdução de Sinais/imunologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Eur J Immunol ; 44(9): 2811-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24846220

RESUMO

Immunity to tumor differentiation antigens, such as melanoma antigen recognized by T cells 1 (MART-1), has been comprehensively studied. Intriguingly, CD8(+) T cells specific for the MART-1(26(27)-35) epitope in the context of HLA-A0201 are about 100 times more abundant compared with T cells specific for other tumor-associated antigens. Moreover, MART-1-specific CD8(+) T cells show a highly biased usage of the Vα-region gene TRAV12-2. Here, we provide independent support for this notion, by showing that the combinatorial pairing of different TCRα- and TCRß- chains derived from HLA-A2-MART-1(26-35) -specific CD8(+) T-cell clones is unusually permissive in conferring MART-1 specificity, provided the CDR1α TRAV12-2 region is used. Whether TCR bias alone accounts for the unusual abundance of HLA-A2-MART-1(26-35) -specific CD8(+) T cells has remained conjectural. Here, we provide an alternative explanation: misinitiated transcription of the MART-1 gene resulting in truncated mRNA isoforms leads to lack of promiscuous transcription of the MART-1(26-35) epitope in human medullary thymic epithelial cells and, consequently, evasion of central self-tolerance toward this epitope. Thus, biased TCR usage and leaky central tolerance might act in an independent and additive manner to confer high frequency of MART-1(26-35) -specific CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Epiteliais/imunologia , Epitopos de Linfócito T/imunologia , Antígeno MART-1/imunologia , Timo/imunologia , Iniciação da Transcrição Genética/imunologia , Linfócitos T CD8-Positivos/citologia , Linhagem Celular , Células Epiteliais/citologia , Feminino , Antígeno HLA-A2/imunologia , Humanos , Masculino , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Timo/citologia
15.
Cancer J ; 20(2): 141-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667960

RESUMO

The ability to engineer T cells to recognize tumor cells through genetic modification with a synthetic chimeric antigen receptor has ushered in a new era in cancer immunotherapy. The most advanced clinical applications are in targeting CD19 on B-cell malignancies. The clinical trials of CD19 chimeric antigen receptor therapy have thus far not attempted to select defined subsets before transduction or imposed uniformity of the CD4 and CD8 cell composition of the cell products. This review will discuss the rationale for and challenges to using adoptive therapy with genetically modified T cells of defined subset and phenotypic composition.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva , Linfoma de Células B/terapia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Antígenos CD19/uso terapêutico , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Linfoma de Células B/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
16.
J Mol Biol ; 425(22): 4496-507, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23954306

RESUMO

One hypothesis accounting for major histocompatibility complex (MHC) restriction by T cell receptors (TCRs) holds that there are several evolutionary conserved residues in TCR variable regions that contact MHC. While this "germline codon" hypothesis is supported by various lines of evidence, it has been difficult to test. The difficulty stems in part from the fact that TCRs exhibit low affinities for pep/MHC, thus limiting the range of binding energies that can be assigned to these key interactions using mutational analyses. To measure the magnitude of binding energies involved, here we used high-affinity TCRs engineered by mutagenesis of CDR3. The TCRs included a high-affinity, MART-1/HLA-A2-specific single-chain TCR and two other high-affinity TCRs that all contain the same Vα region and recognize the same MHC allele (HLA-A2), with different peptides and Vß regions. Mutational analysis of residues in CDR1 and CDR2 of the three Vα2 regions showed the importance of the key germline codon residue Y51. However, two other proposed key residues showed significant differences among the TCRs in their relative contributions to binding. With the use of single-position, yeast-display libraries in two of the key residues, MART-1/HLA-A2 selections also revealed strong preferences for wild-type germline codon residues, but several alternative residues could also accommodate binding and, hence, MHC restriction. Thus, although a single residue (Y51) could account for a proportion of the energy associated with positive selection (i.e., MHC restriction), there is significant plasticity in requirements for particular side chains in CDR1 and CDR2 and in their relative binding contributions among different TCRs.


Assuntos
Regiões Determinantes de Complementaridade/química , Antígeno HLA-A2/química , Peptídeos/química , Receptores de Antígenos de Linfócitos T alfa-beta/química , Sequência de Aminoácidos , Técnicas de Visualização da Superfície Celular , Regiões Determinantes de Complementaridade/metabolismo , Expressão Gênica , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Humanos , Antígeno MART-1/imunologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Solubilidade
17.
Clin Cancer Res ; 19(12): 3153-64, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23620405

RESUMO

PURPOSE: The adoptive transfer of T cells modified to express a chimeric antigen receptor (CAR) comprised of an extracellular single-chain antibody (scFV) fragment specific for a tumor cell surface molecule, and linked to an intracellular signaling module, has activity in advanced malignancies. The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a tumor-associated molecule expressed in prevalent B-lymphoid and epithelial cancers and is absent on normal mature B cells and vital tissues, making it a candidate for CAR T-cell therapy. EXPERIMENTAL DESIGN: We constructed ROR1-CARs from scFVs with different affinities and containing extracellular IgG4-Fc spacer domains of different lengths, and evaluated the ability of T cells expressing each CAR to recognize ROR1(+) hematopoietic and epithelial tumors in vitro, and to eliminate human mantle cell lymphoma (MCL) engrafted into immunodeficient mice. RESULTS: ROR1-CARs containing a short "Hinge-only" extracellular spacer conferred superior lysis of ROR1(+) tumor cells and induction of T-cell effector functions compared with CARs with long "Hinge-CH2-CH3" spacers. CARs derived from a higher affinity scFV conferred maximum T-cell effector function against primary CLL and ROR1(+) epithelial cancer lines in vitro without inducing activation-induced T-cell death. T cells modified with an optimal ROR1-CAR were equivalently effective as CD19-CAR-modified T cells in mediating regression of JeKo-1 MCL in immunodeficient mice. CONCLUSIONS: Our results show that customizing spacer design and increasing affinity of ROR1-CARs enhances T-cell effector function and recognition of ROR1(+) tumors. T cells modified with an optimized ROR1-CAR have significant antitumor efficacy in a preclinical model in vivo, suggesting they may be useful to treat ROR1(+) tumors in clinical applications.


Assuntos
Neoplasias/imunologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores de Antígenos de Linfócitos T/genética , Anticorpos de Cadeia Única/imunologia , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Estrutura Terciária de Proteína , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/imunologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Anticorpos de Cadeia Única/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Int J Cancer ; 132(6): 1360-7, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22907642

RESUMO

The cancer-testis antigen NY-ESO-1 has been used as a target for different immunotherapies like vaccinations and adoptive transfer of antigen-specific cytotoxic T cells, as it is expressed in various tumor types and has limited expression in normal cells. The in vitro generation of T cells with defined antigen specificity by T cell receptor (TCR) gene transfer is an established method to create cells for immunotherapy. However, an extensive characterization of TCR which are candidates for treatment of patients is crucial for successful therapies. The TCR has to be efficiently expressed, their affinity to the desired antigen should be high enough to recognize low amounts of endogenously processed peptides on tumor cells, and the TCR should not be cross-reactive to other antigens. We characterized three NY-ESO-1 antigen-reactive cytotoxic T lymphocyte clones which were generated by different approaches of T cell priming (autologous, allogeneic), and transferred their TCR into donor T cells for more extensive evaluations. Although one TCR most efficiently bound MHC-multimers loaded with NY-ESO-1 peptide, T cells expressing this transgenic TCR were not able to recognize endogenously processed antigen. A second TCR recognized HLA-A2 independent of the bound peptide beside its much stronger recognition of NY-ESO-1 bound to HLA-A2. A third TCR displayed an intermediate but peptide-specific performance in all functional assays and, therefore, is the most promising candidate TCR for further clinical development. Our data indicate that multiple parameters of TCR gene-modified T cells have to be evaluated to identify an optimal TCR candidate for adoptive therapy.


Assuntos
Antígenos de Neoplasias/imunologia , Proteínas de Membrana/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linhagem Celular Tumoral , Antígeno HLA-A2/imunologia , Humanos , Imunoterapia , Linfócitos T Citotóxicos/imunologia
19.
J Immunol ; 189(2): 598-605, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22689880

RESUMO

Adoptive transfer of T cells expressing transgenic TCR with antitumor specificity provides a hopeful new therapy for patients with advanced cancer. To fulfill a large need for TCR with high affinity and specificity for various tumor entities, we sought to identify parameters for rapid selection of CTL clones with suitable characteristics. Twelve CTL clones displaying different Ag sensitivities for the same peptide-MHC epitope of the melanoma-associated Ag tyrosinase were analyzed in detail. Better MHC-multimer binding and slower multimer release are thought to reflect stronger TCR-peptide-MHC interactions; thus, these parameters would seem well suited to identify higher avidity CTL. However, large disparities were found comparing CTL multimer binding with peptide sensitivity. In contrast, CD8(+) CTL with superior Ag sensitivity mediated good tumor cytotoxicity and also secreted the triple combination of IFN-γ, IL-2, and TNF-α, representing a Th1 pattern often missing in lower avidity CTL. Furthermore, recipient lymphocytes were imbued with high Ag sensitivity, superior tumor recognition, as well as capacity for Th1 polycytokine secretion after transduction with the TCR of a high-avidity CTL. Thus, Th1 polycytokine secretion served as a suitable parameter to rapidly demark cytotoxic CD8(+) T cell clones for further TCR evaluation.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/biossíntese , Citotoxicidade Imunológica , Células Th1/imunologia , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Adesão Celular/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Células Clonais , Técnicas de Cocultura , Citocinas/classificação , Citocinas/metabolismo , Humanos , Células Th1/metabolismo , Células Th1/patologia
20.
Int J Cancer ; 128(2): 371-8, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20333679

RESUMO

It has been shown that injecting a suspension of IFN-γ-secreting tumor cells results in their rejection. This effect has been attributed to IFN-γ preventing tumor stroma formation but not to a direct effect on the cancer cells. However, it is not known, which influence IFN-γ has on tumors with an established stroma. To address this question, the plasmacytoma cell line J558L was transduced with a vector allowing doxycycline-inducible IFN-γ gene expression. After the injection of the tumor cells into mice, IFN-γ was induced at different time points. Tumors did not grow when inducing IFN-γ immediately after tumor cell inoculation, while approximately half of the tumors were rejected when IFN-γ was induced in early established tumors within 2 weeks. Induction of IFN-γ 2-3 weeks after tumor cell inoculation was less efficient (0-17% rejection). IFN-γ induction in established tumors led to a reduction of CD146(+) endothelial cells and massive necrosis. Together, we show that vascularized tumors can be rejected by local IFN-γ expression, but that rejection of established tumors was less efficient over time. This suggests that transplanted tumors became less susceptible to local IFN-γ treatment the better they are established.


Assuntos
Interferon gama/biossíntese , Neoplasias Experimentais/imunologia , Animais , Rejeição de Enxerto , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Necrose , Transplante de Neoplasias , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA