Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894744

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of amyloid ß (Aß) plaques in the brain, leading to cognitive impairment and other clinical symptoms. The 5XFAD mouse model is commonly used in AD research because it expresses five human transgenes that result in the accumulation of Aß plaques and cognitive decline at a relatively early age. Behavioral experiments are frequently conducted using this model; however, the effect size has not yet been reported. In this study, we examined basic cognition and locomotion in 5XFAD mice with a C57BL6/J background (5XFAD-J) at 6 months of age, a period in which impairments of cognitive function and locomotion are commonly observed. We analyzed the effect sizes of cognitive and locomotive experiments in the 5XFAD mice compared with those in the wild-type mice. Our results suggest that for long-term memory analysis, the novel object recognition test (p = 0.013, effect size 1.24) required a sample size of at least 12 to obtain meaningful results. Moreover, analysis of general locomotion over total distance with the Laboratory Animal Behavior Observation, Registration and Analysis System (LABORAS) test during the dark phase (p = 0.007, effect size -1.37) needed a sample size of 10 for a statistical power (1-ß) of 0.8. In conclusion, we can conduct more ethical and scientifically rigorous animal experiments using 5XFAD mice based on the effect and sample sizes suggested in this study.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Camundongos Transgênicos , Escala de Avaliação Comportamental , Cognição , Modelos Animais de Doenças
2.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37240016

RESUMO

The current method for diagnosing methamphetamine use disorder (MUD) relies on self-reports and interviews with psychiatrists, which lack scientific rigor. This highlights the need for novel biomarkers to accurately diagnose MUD. In this study, we identified transcriptome biomarkers using hair follicles and proposed a diagnostic model for monitoring the MUD treatment process. We performed RNA sequencing analysis on hair follicle cells from healthy controls and former and current MUD patients who had been detained in the past for illegal use of methamphetamine (MA). We selected candidate genes for monitoring MUD patients by performing multivariate analysis methods, such as PCA and PLS-DA, and PPI network analysis. We developed a two-stage diagnostic model using multivariate ROC analysis based on the PLS-DA method. We constructed a two-step prediction model for MUD diagnosis using multivariate ROC analysis, including 10 biomarkers. The first step model, which distinguishes non-recovered patients from others, showed very high accuracy (prediction accuracy, 98.7%). The second step model, which distinguishes almost-recovered patients from healthy controls, showed high accuracy (prediction accuracy, 81.3%). This study is the first report to use hair follicles of MUD patients and to develop a MUD prediction model based on transcriptomic biomarkers, which offers a potential solution to improve the accuracy of MUD diagnosis and may lead to the development of better pharmacological treatments for the disorder in the future.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Metanfetamina , Humanos , Metanfetamina/efeitos adversos , Transtornos Relacionados ao Uso de Anfetaminas/diagnóstico , Transtornos Relacionados ao Uso de Anfetaminas/genética , Folículo Piloso , Curva ROC , Biomarcadores
3.
Exp Mol Med ; 55(4): 779-793, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37009792

RESUMO

Human sterile α motif and HD domain-containing protein 1 (SAMHD1) has deoxyribonucleoside triphosphohydrolase (dNTPase) activity that allows it to defend against human immunodeficiency virus type I (HIV-1) infections and regulate the cell cycle. Although SAMHD1 mutations have been identified in various cancer types, their role in cancer is unclear. Here, we aimed to investigate the oncogenic role of SAMHD1 in human clear cell renal cell carcinoma (ccRCC), particularly as a core molecule promoting cancer cell migration. We found that SAMHD1 participated in endocytosis and lamellipodia formation. Mechanistically, SAMHD1 contributed to the formation of the endosomal complex by binding to cortactin. Thereafter, SAMHD1-stimulated endosomal focal adhesion kinase (FAK) signaling activated Rac1, which promoted lamellipodia formation on the plasma membrane and enhanced the motility of ccRCC cells. Finally, we observed a strong correlation between SAMHD1 expression and the activation of FAK and cortactin in tumor tissues obtained from patients with ccRCC. In brief, these findings reveal that SAMHD1 is an oncogene that plays a pivotal role in ccRCC cell migration through the endosomal FAK-Rac1 signaling pathway.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Cortactina , Proteína-Tirosina Quinases de Adesão Focal , Proteína 1 com Domínio SAM e Domínio HD , Pseudópodes , Transdução de Sinais , Neoplasias Renais/genética , Proteínas rac1 de Ligação ao GTP/genética
4.
Front Pharmacol ; 13: 997701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225577

RESUMO

MicroRNA (miRNA)-mediated striatal gene regulation may play an important role in methamphetamine (METH) addiction. This study aimed to identify changes in novel miRNAs and their target genes during METH self-administration and investigate their roles in METH-induced locomotion. RNA sequencing analysis revealed that mir-183-5p was upregulated in the striatum of METH self-administered rats, and target gene prediction revealed that the glucocorticoid receptor (GR) gene, Nr3c1, was a potential target gene for mir-183-5p. We confirmed that single and repeated METH administrations increased METH-induced locomotion and plasma corticosterone levels in rats. Additionally, increased miR-185-5p expression and decreased GR gene expression were observed only in the repeated-METH-injection group but not in the single-injection group. We then investigated the effects of miR-183-5p on METH-induced locomotion using a miR-183-5p mimic and inhibitor. Injection of a mir-183-5p mimic in the striatum of rats attenuated METH-induced locomotion, whereas injection of a miR-183-5p inhibitor enhanced the locomotor activity in METH-administered rats. Furthermore, the miR-183-5p mimic reduced the phosphorylation of tyrosine hydroxylase (TH) whereas the inhibitor increased it. Taken together, these results indicate that repeated METH injections increase striatal miR-183-5p expression and regulate METH-induced locomotion by regulating GR expression in rats, thereby suggesting a potential role of miR-183-5p as a novel regulator of METH-induced locomotion.

5.
Curr Alzheimer Res ; 19(3): 246-263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422218

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a lethal, progressive neurodegenerative disorder that has been linked to a deficiency of the neurotransmitter acetylcholine. Currently, many acetylcholinesterase inhibitors, such as donepezil, are widely used for the treatment of AD. On the other hand, the efficacy of long-term donepezil use is limited. SIP3, a mixture of three herbal extracts from Santalum album, Illicium verum, and Polygala tenuifolia, is a new formula derived from traditional Korean herbal medicine. OBJECTIVE: We assessed the synergistic effect of SIP3 and donepezil co-treatment on symptoms of AD using APP/PS1 transgenic mice. METHODS: In this study, a Drosophila AD model and SH-SY5Y clles were used to assess the toxicity of SIP3, and APPswe/PS1dE9 (APP/PS1) transgenic mice were used to evaluate the cognitive-behavioral and depression-like behavior effect of SIP3 and donepezil co-treatment on symptoms of AD. The cerebral cortex or hippocampus transcriptomes were analyzed by RNA sequencing and miRNA to investigate the molecular and cellular mechanisms underlying the positive effects of SIP3 on AD. RESULTS: In the passive avoidance test (PAT) and Morris water maze (MWM) test, the combination of SIP3 and donepezil improved the learning capabilities and memory of APP/PS1 mice in the mid-stage of AD compared to the group treated with donepezil only. In addition, co-administration of SIP3 and donepezil effectively reduced the depression-like behavior in the forced swimming and tail suspension tests. Furthermore, RNA sequencing of the cerebral cortex transcriptome and miRNA of the hippocampus showed that the gene expression profiles after a low dose SIP3 co-treatment were more similar to those of the normal phenotype mice than those obtained after the donepezil treatment alone. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, showed that differentially expressed genes were involved in the locomotor behavior and neuroactive ligand-receptor interactions. These results suggest that a co-treatment of low dose SIP3 and donepezil improves impaired learning, memory, and depression in the mid-stage of AD in mice. CONCLUSION: Co-treatment of low dose SIP3 and donepezil improves impaired learning, memory, and depression in the mid-stage of AD in mice.


Assuntos
Doença de Alzheimer , MicroRNAs , Neuroblastoma , Acetilcolinesterase/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Depressão , Modelos Animais de Doenças , Donepezila/farmacologia , Medicina Herbária , Hipocampo/metabolismo , Humanos , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
PLoS One ; 16(6): e0253273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34115811

RESUMO

Object control skills are one of the most important abilities in daily life. Knowledge of object manipulation is an essential factor in improving object control skills. Although males and females equally try to use object manipulation knowledge, their object control abilities often differ. To explain this difference, we investigated how structural brain networks in males and females are differentially organized in the tool-preferring areas of the object manipulation network. The structural connectivity between the primary motor and premotor regions and between the inferior parietal regions in males was significantly higher than that in females. However, females showed greater structural connectivity in various regions of the object manipulation network, including the paracentral lobule, inferior parietal regions, superior parietal cortices, MT+ complex and neighboring visual areas, and dorsal stream visual cortex. The global node strength found in the female parietal network was significantly higher than that in males but not for the entire object manipulation, ventral temporal, and motor networks. These findings indicated that the parietal network in females has greater inter-regional structural connectivity to retrieve manipulation knowledge than that in males. This study suggests that differential structural networks in males and females might influence object manipulation knowledge retrieval.


Assuntos
Encéfalo/anatomia & histologia , Rede Nervosa/anatomia & histologia , Desempenho Psicomotor , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Neuroimagem , Desempenho Psicomotor/fisiologia , Fatores Sexuais , Adulto Jovem
7.
J Pathol ; 253(1): 55-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32918742

RESUMO

Nonalcoholic fatty liver disease is a chronic condition involving steatosis, steatohepatitis and fibrosis, and its progression remains unclear. Although the tetraspanin transmembrane 4 L six family member 5 (TM4SF5) is involved in hepatic fibrosis and cancer, its role in nonalcoholic steatohepatitis (NASH) progression is unknown. We investigated the contribution of TM4SF5 to liver pathology using transgenic and KO mice, diet- or drug-treated mice, in vitro primary cells, and in human tissue. TM4SF5-overexpressing mice exhibited nonalcoholic steatosis and NASH in an age-dependent manner. Initially, TM4SF5-positive hepatocytes and liver tissue exhibited lipid accumulation, decreased Sirtuin 1 (SIRT1), increased sterol regulatory-element binding proteins (SREBPs) and inactive STAT3 via suppressor of cytokine signaling (SOCS)1/3 upregulation. In older mice, TM4SF5 promoted inflammatory factor induction, SIRT1 expression and STAT3 activity, but did not change SOCS or SREBP levels, leading to active STAT3-mediated ECM production for NASH progression. A TM4SF5-associated increase in chemokines promoted SIRT1 expression and progression to NASH with fibrosis. Suppression of the chemokine CCL20 reduced immune cell infiltration and ECM production. Liver tissue from high-fat diet- or CCl4 -treated mice and human patients exhibited TM4SF5-dependent steatotic or steatohepatitic livers with links between TM4SF5-mediated SIRT1 modulation and SREBP or SOCS/STAT3 signaling axes. TM4SF5-mediated STAT3 activation in fibrotic NASH livers increased collagen I and laminin γ2. Both collagen I α1 and laminin γ2 suppression resulted in reduced SIRT1 and active STAT3, but no change in SREBP1 or SOCS, and abolished CCl4 -mediated mouse liver damage. TM4SF5-mediated signaling pathways that involve SIRT1, SREBPs and SOCS/STAT3 promoted progression to NASH. Therefore, TM4SF5 and its downstream effectors may be promising therapeutic targets to treat nonalcoholic fatty liver disease. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Matriz Extracelular/enzimologia , Metabolismo dos Lipídeos , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Sirtuína 1/metabolismo , Animais , Tetracloreto de Carbono , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta Hiperlipídica , Progressão da Doença , Matriz Extracelular/patologia , Humanos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais
8.
Microb Pathog ; 152: 104583, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33164814

RESUMO

In recent years, a significant interest in gut microbiota-host crosstalk has increased due to the involvement of gut bacteria on host health and diseases. Gut dysbiosis, a change in the gut microbiota composition alters host-microbiota interactions and induces gut immune dysregulation that have been associated with pathogenesis of several diseases, including cardiovascular diseases (CVD) and chronic kidney diseases (CKD). Gut microbiota affect the host, mainly through the immunological and metabolism-dependent and metabolism-independent pathways. In addition to these, the production of trimethylamine (TMA)/trimethylamine N-oxide (TMAO), uremic toxins and lipopolysaccharides (LPS) by gut microbiota are involved in the pathogenesis of CVD and CKD. Given the current approaches and challenges that can reshape the bacterial composition by restoring the balance between host and microbiota. In this review, we discuss the complex interplay between the gut microbiota, and the heart and the kidney, and explain the gut-cardiovascular axis and gut-kidney axis on the development and progression of cardiovascular diseases and chronic kidney diseases. In addition, we discuss the interplay between gut and kidney on hypertension or cardiovascular pathology.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Sistema Digestório , Disbiose , Humanos , Rim
9.
Cancer Res ; 81(1): 77-90, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32967925

RESUMO

Histone methyltransferase NSD3 is frequently dysregulated in human cancers, yet the epigenetic role of NSD3 during cancer development remains elusive. Here we report that NSD3-induced methylation of H3K36 is crucial for breast tumor initiation and metastasis. In patients with breast cancer, elevated expression of NSD3 was associated with recurrence, distant metastasis, and poor survival. In vivo, NSD3 promoted malignant transformation of mammary epithelial cells, a function comparable to that of HRAS. Furthermore, NSD3 expanded breast cancer-initiating cells and promoted epithelial-mesenchymal transition to trigger tumor invasion and metastasis. Mechanistically, the long isoform (full-length transcript) of NSD3, but not its shorter isoform lacking a catalytic domain, cooperated with EZH2 and RNA polymerase II to stimulate H3K36me2/3-dependent transactivation of genes associated with NOTCH receptor cleavage, leading to nuclear accumulation of NICD and NICD-mediated transcriptional repression of E-cadherin. Furthermore, mice harboring primary and metastatic breast tumors with overexpressed NSD3 showed sensitivity to NOTCH inhibition. Together, our findings uncover the critical epigenetic role of NSD3 in the modulation of NOTCH-dependent breast tumor progression, providing a rationale for targeting the NSD3-NOTCH signaling regulatory axis in aggressive breast cancer. SIGNIFICANCE: This study demonstrates the functional significance of histone methyltransferase NSD3 in epigenetic regulation of breast cancer stemness, EMT, and metastasis, suggesting NSD3 as an actionable therapeutic target in metastatic breast cancer.


Assuntos
Neoplasias da Mama/patologia , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Neoplasias Pulmonares/secundário , Proteínas Nucleares/metabolismo , Receptor Notch1/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Epigênese Genética , Feminino , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Nucleares/genética , Prognóstico , Receptor Notch1/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238484

RESUMO

Methamphetamine (MA) use disorder is a chronic neuropsychiatric disease characterized by recurrent binge episodes, intervals of abstinence, and relapses to MA use. Therefore, identification of the key genes and pathways involved is important for improving the diagnosis and treatment of this disorder. In this study, high-throughput RNA sequencing was performed to find the key genes and examine the comparability of gene expression between whisker follicles and the striatum of rats following MA self-administration. A total of 253 and 87 differentially expressed genes (DEGs) were identified in whisker follicles and the striatum, respectively. Multivariate and network analyses were performed on these DEGs to find hub genes and key pathways within the constructed network. A total of 129 and 49 genes were finally selected from the DEG sets of whisker follicles and of the striatum. Statistically significant DEGs were found to belong to the classes of genes involved in nicotine addiction, cocaine addiction, and amphetamine addiction in the striatum as well as in Parkinson's, Huntington's, and Alzheimer's diseases in whisker follicles. Of note, several genes and pathways including retrograde endocannabinoid signaling and the synaptic vesicle cycle pathway were common between the two tissues. Therefore, this study provides the first data on gene expression levels in whisker follicles and in the striatum in relation to MA reward and thereby may accelerate the research on the whisker follicle as an alternative source of biomarkers for the diagnosis of MA use disorder.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/genética , Folículo Piloso/efeitos dos fármacos , Metanfetamina/farmacologia , Transcriptoma/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Transtornos Relacionados ao Uso de Anfetaminas/patologia , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Folículo Piloso/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ratos , Autoadministração , Transdução de Sinais/efeitos dos fármacos , Vibrissas/efeitos dos fármacos , Vibrissas/metabolismo
11.
ACS Pharmacol Transl Sci ; 3(4): 676-689, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32832870

RESUMO

The G protein-coupled receptor 182 (GPR182) is an orphan GPCR, the expression of which is enriched in embryonic endothelial cells (ECs). However, the physiological role and molecular mechanism of action of GPR182 are unknown. Here, we show that GPR182 negatively regulates definitive hematopoiesis in zebrafish and mice. In zebrafish, gpr182 expression is enriched in the hemogenic endothelium (HE), and gpr182 -/- display an increased expression of HE and hematopoietic stem cell (HSC) marker genes. Notably, we find an increased number of myeloid cells in gpr182 -/- compared to wild-type. Further, by time-lapse imaging of zebrafish embryos during the endothelial-to-hematopoietic transition, we find that HE/HSC cell numbers are increased in gpr182 -/- compared to wild-type. GPR182 -/- mice also exhibit an increased number of myeloid cells compared to wild-type, indicating a conserved role for GPR182 in myelopoiesis. Using cell-based small molecule screening and transcriptomic analyses, we further find that GPR182 regulates the leukotriene B4 (LTB4) biosynthesis pathway. Taken together, these data indicate that GPR182 is a negative regulator of definitive hematopoiesis in zebrafish and mice, and provide further evidence for LTB4 signaling in HSC biology.

12.
FASEB J ; 34(6): 8702-8720, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32385864

RESUMO

Disruption of colonic homeostasis caused by aberrant M1/M2 macrophage polarization and dysbiosis contributes to inflammatory bowel disease (IBD) pathogenesis. However, the molecular factors mediating colonic homeostasis are not well characterized. Here, we found that Ninjurin1 (Ninj1) limits colon inflammation by regulating macrophage polarization and microbiota composition under homeostatic conditions and during colitis development. Ninj1 deletion in mice induced hypersusceptibility to colitis, with increased prevalence of colitogenic Prevotellaceae strains and decreased immunoregulatory Lachnospiraceae strains. Upon co-housing (CoH) with WT mice, Ninj1-/- mice showed increased Lachnospiraceae and decreased Prevotellaceae abundance, with subsequent improvement of colitis. Under homeostatic conditions, M1 macrophage frequency was higher in the Ninj1-/- mouse colons than wild-type (WT) mouse colons, which may contribute to increased basal colonic inflammation and microbial imbalance. Following colitis induction, Ninj1 expression was increased in macrophages; meanwhile Ninj1-/- mice showed severe colitis development and impaired recovery, associated with decreased M2 macrophages and escalated microbial imbalance. In vitro, Ninj1 knockdown in mouse and human macrophages activated M1 polarization and restricted M2 polarization. Finally, the transfer of WT macrophages ameliorated severe colitis in Ninj1-/- mice. These findings suggest that Ninj1 mediates colonic homeostasis by modulating M1/M2 macrophage balance and preventing extensive dysbiosis, with implications for IBD prevention and therapy.


Assuntos
Moléculas de Adesão Celular Neuronais/deficiência , Colite/metabolismo , Colite/patologia , Microbioma Gastrointestinal/fisiologia , Macrófagos/metabolismo , Macrófagos/patologia , Fatores de Crescimento Neural/deficiência , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Homeostase/fisiologia , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , Fatores de Crescimento Neural/metabolismo , Células THP-1/metabolismo
13.
PLoS One ; 14(10): e0223608, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31596872

RESUMO

Hypoxia and angiogenesis are critical components in the progression of solid cancer, including gastric cancers (GCs). miR-382 has been identified as a hypoxia-induced miR (hypoxamiR), but the clinical significance in GCs has not been identified yet. To explore the clinical and prognostic importance of miR-382 in GCs, the surgical specimens of 398 patients with GCs in KNU hospital in Korea, the total of 183 patients was randomly selected using simple sampling methods and big data with 446 GCs and 45 normal tissues from the data portal (https://portal.gdc.cancer.gov/) were analysed. Expression of miR-382 as well as miR-210, as a positive control hypoxamiR by qRT-PCR in histologically malignant region of GCs showed significantly positive correlation (R = 0.516, p<0.001). High miR-210 and miR-382 expression was significantly correlated with unfavorable prognosis including advanced GCs (AGC), higher T category, N category, pathologic TNM stage, lymphovascular invasion, venous invasion, and perinueral invasion, respectively (all p<0.05). In univariate analysis, high miR-210 expression was significantly associated with worse overall survival (OS) (p = 0.036) but not high miR-382. In paired 60 gastric normal and cancer tissues, miR-382 expression in cancer tissues was significantly higher than normal counterpart (p = 0.003), but not miR-210 expression. However, by increasing the patient number from the big data analysis, miR-210 as well as miR-382 expression in tumor tissues was significantly higher than the normal tissues. Our results suggest that miR-382, as novel hypoxamiR, can be a prognostic marker for advanced GCs and might be correlated with metastatic potential. miR-382 might play important roles in the aggressiveness, progression and prognosis of GCs. In addition, miR-382 give a predictive marker for progression of GCs compared to the normal or preneoplastic lesion.


Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/genética , MicroRNAs/genética , Neoplasias Gástricas/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/normas , Hipóxia Celular , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , MicroRNAs/normas , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Análise de Sobrevida
14.
EMBO Rep ; 20(10): e48058, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31468695

RESUMO

Cyclin-dependent kinase 12 (CDK12) has emerged as an effective therapeutic target due to its ability to regulate DNA damage repair in human cancers, but little is known about the role of CDK12 in driving tumorigenesis. Here, we demonstrate that CDK12 promotes tumor initiation as a novel regulator of cancer stem cells (CSCs) and induces anti-HER2 therapy resistance in human breast cancer. High CDK12 expression caused by concurrent amplification of CDK12 and HER2 in breast cancer patients is associated with disease recurrence and poor survival. CDK12 induces self-renewal of breast CSCs and in vivo tumor-initiating ability, and also reduces susceptibility to trastuzumab. Furthermore, CDK12 kinase activity inhibition facilitates anticancer efficacy of trastuzumab in HER2+ tumors, and mice bearing trastuzumab-resistant HER2+ tumor show sensitivity to an inhibitor of CDK12. Mechanistically, the catalytic activity of CDK12 is required for the expression of genes involved in the activation of ErbB-PI3K-AKT or WNT-signaling cascades. These results suggest that CDK12 is a major oncogenic driver and an actionable target for HER2+ breast cancer to replace or augment current anti-HER2 therapies.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinogênese/patologia , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos , Transdução de Sinais , Trastuzumab/uso terapêutico , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromossomos Humanos Par 17/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-3/metabolismo , Trastuzumab/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Via de Sinalização Wnt
16.
Exp Mol Med ; 51(1): 1-16, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30700695

RESUMO

Osteoclasts (OCs) are bone-resorbing cells that originate from hematopoietic stem cells and develop through the fusion of mononuclear myeloid precursors. Dysregulation of OC development causes bone disorders such as osteopetrosis, osteoporosis, and rheumatoid arthritis. Although the molecular mechanisms underlying osteoclastogenesis have been well established, the means by which OCs maintain their survival during OC development remain unknown. We found that Ninjurin1 (Ninj1) expression is dynamically regulated during osteoclastogenesis and that Ninj1-/- mice exhibit increased trabecular bone volume owing to impaired OC development. Ninj1 deficiency did not alter OC differentiation, transmigration, fusion, or actin ring formation but increased Caspase-9-dependent intrinsic apoptosis in prefusion OCs (preOCs). Overexpression of Ninj1 enhanced the survival of mouse macrophage/preOC RAW264.7 cells in osteoclastogenic culture, suggesting that Ninj1 is important for the survival of preOCs. Finally, analysis of publicly available microarray data sets revealed a potent correlation between high NINJ1 expression and destructive bone disorders in humans. Our data indicate that Ninj1 plays an important role in bone homeostasis by enhancing the survival of preOCs.


Assuntos
Osso Esponjoso/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Fatores de Crescimento Neural/genética , Osteoclastos/metabolismo , Osteogênese , Animais , Apoptose , Osso Esponjoso/crescimento & desenvolvimento , Moléculas de Adesão Celular Neuronais/metabolismo , Células Cultivadas , Humanos , Masculino , Camundongos , Fatores de Crescimento Neural/metabolismo , Osteoclastos/citologia , Células RAW 264.7
17.
J Natl Cancer Inst ; 111(6): 609-619, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30265336

RESUMO

BACKGROUND: Resistance to HER2-targeted therapy with trastuzumab still remains a major challenge in HER2-amplified tumors. Here we investigated the potential role of MEL-18, a polycomb group gene, as a novel prognostic marker for trastuzumab resistance in HER2-positive (HER2+) breast cancer. METHODS: The genetic alteration of MEL-18 and its clinical relevance were examined in multiple breast cancer cohorts including METABRIC (n = 1,980), TCGA (n = 825), and our clinical specimens (n = 213, trastuzumab-treated HER2+ cases). MEL-18 amplification was validated by fluorescence in situ hybridization (FISH) analysis. The MEL-18 effect on trastuzumab response was confirmed by in vitro cell viability assays and an in vivo xenograft experiment (n = 7 per group). Gene expression microarray and receptor tyrosine kinase array were performed to identify the trastuzumab resistance mechanism by MEL-18 loss. All statistical tests were two-sided. RESULTS: MEL-18 was exclusively amplified in approximately 30-50% of HER2+ breast tumors and was associated with a favorable clinical outcome (disease-free survival: P = .02 in HER2+ cases, METABRIC; P = .04 in patients receiving trastuzumab). In MEL-18-amplified HER2+ breast cancer, MEL-18 depletion induced trastuzumab resistance by increasing ADAM sheddase-mediated ErbB ligand production and receptor heterodimerization. MEL-18 epigenetically silenced ADAM10/17 expression in cooperation with polycomb-repressive complex (PRC) 1 and PRC2. Combination treatment with an ADAM10/17 inhibitor and trastuzumab could overcome MEL-18 loss-mediated trastuzumab resistance in vivo (BT474/shMEL-18 xenograft: trastuzumab, mean [SD] tumor volume = 406.1 [50.1] mm3, vs trastuzumab + GW280264 30 mg/kg, mean [SD] tumor volume = 68.4 [15.6] mm3, P < .001). Consistently, trastuzumab-treated patients harboring concomitant MEL-18 amplification and low ADAM17 expression showed prolonged relapse-free survival (P = .02 in our cohort, n = 213). CONCLUSION: MEL-18 serves to prevent ligand-dependent ErbB heterodimerization and trastuzumab resistance, suggesting MEL-18 amplification as a novel biomarker for HER2+ breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Complexo Repressor Polycomb 1/genética , Receptor ErbB-2/antagonistas & inibidores , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM10/metabolismo , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Amplificação de Genes , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Trastuzumab/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncol Lett ; 16(5): 5907-5915, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30344741

RESUMO

AKAP12 belongs to A-kinase anchoring protein (AKAP) family of scaffold proteins and is known as a tumor suppressor in several human cancer types. Its role as a tumor suppressor in hepatocellular carcinoma (HCC) was proposed due to its downregulation and epigenetic modification in human HCC; however, the effect of its deficiency on liver injuries, such as liver fibrosis and cancer has been poorly studied. By analyzing tumor and non-tumor tissues of 15 patients with HCC, it was confirmed that AKAP12 expression was downregulated in human HCC as compared with adjacent non-tumor tissues. Immunohistochemical staining of mouse liver tissue for AKAP12 revealed that its sinusoidal expression was diminished in capillarized endothelium after 8 weeks of thioacetamide (TAA) administration. AKAP12 deficiency resulted in the promotion of ductular response of biliary epithelial cells, whereas overall fibrosis and myofibroblast activation were comparable between genotypes after short-term TAA treatment. The mRNA expressions of some fibrosis-related genes such as those encoding epithelial cell adhesion molecule, collagen type 1 α1 and elastin were upregulated in liver tissues of AKAP12-knockout mice. Long-term administration of TAA for 26 weeks led to the development of liver tumors; the incidence of tumor development was higher in AKAP12-deficient mice than in wild-type littermates. Together, these results suggest that AKAP12 functions as a tumor suppressor in liver cancer and is associated with the regulation of hepatic non-parenchymal cells.

19.
Exp Mol Med ; 50(4): 1-13, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700280

RESUMO

Liver fibrosis can be reversed by removing its causative injuries; however, the molecular mechanisms mediating the resolution of liver fibrogenesis are poorly understood. We investigate the role of a scaffold protein, A-Kinase Anchoring Protein 12 (AKAP12), during liver fibrosis onset, and resolution. Biliary fibrogenesis and fibrosis resolution was induced in wild-type (WT) or AKAP12-deficient C57BL/6 mice through different feeding regimens with 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing chow. AKAP12 expression in portal fibroblasts (PFs) and liver sinusoidal endothelial cells (LSECs) gradually decreased as fibrosis progressed but was restored after cessation of the fibrotic challenge. Histological analysis of human liver specimens with varying degrees of fibrosis of different etiologies revealed that AKAP12 expression diminishes in hepatic fibrosis from its early stages onward. AKAP12 KO mice displayed reduced fibrosis resolution in a DDC-induced biliary fibrosis model, which was accompanied by impaired normalization of myofibroblasts and capillarized sinusoids. RNA sequencing of the liver transcriptome revealed that genes related to ECM accumulation and vascular remodeling were mostly elevated in AKAP12 KO samples. Gene ontology (GO) and bioinformatic pathway analyses identified that the differentially expressed genes were significantly enriched in GO categories and pathways, such as the adenosine 3',5'-cyclic monophosphate (cAMP) pathway. Knockdown of the AKAP12 gene in cultured primary PFs revealed that AKAP12 inhibited PF activation in association with the adenosine 3',5'-cyclic monophosphate (cAMP) pathway. Moreover, AKAP12 knockdown in LSECs led to enhanced angiogenesis, endothelin-1 expression and alterations in laminin composition. Collectively, this study demonstrates that AKAP12-mediated regulation of PFs and LSECs has a central role in resolving hepatic fibrosis.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ciclo Celular/genética , Fibroblastos/patologia , Regulação da Expressão Gênica , Cirrose Hepática/genética , Fígado/patologia , Proteínas de Ancoragem à Quinase A/análise , Animais , Proteínas de Ciclo Celular/análise , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transcriptoma
20.
J Natl Cancer Inst ; 110(4)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028222

RESUMO

Background: Despite the benefit of endocrine therapy, acquired resistance during or after treatment still remains a major challenge in estrogen receptor (ER)-positive breast cancer. We investigated the potential role of histone demethylase retinoblastoma-binding protein 2 (RBP2) in endocrine therapy resistance of breast cancer. Methods: Survival of breast cancer patients according to RBP2 expression was analyzed in three different breast cancer cohorts including METABRIC (n = 1980) and KM plotter (n = 1764). RBP2-mediated tamoxifen resistance was confirmed by invitro sulforhodamine B (SRB) colorimetric, colony-forming assays, and invivo xenograft models (n = 8 per group). RNA-seq analysis and receptor tyrosine kinase assay were performed to identify the tamoxifen resistance mechanism by RBP2. All statistical tests were two-sided. Results: RBP2 was associated with poor prognosis to tamoxifen therapy in ER-positive breast cancer (P = .04 in HYU cohort, P = .02 in KM plotter, P = .007 in METABRIC, log-rank test). Furthermore, RBP2 expression was elevated in patients with tamoxifen-resistant breast cancer (P = .04, chi-square test). Knockdown of RBP2 conferred tamoxifen sensitivity, whereas overexpression of RBP2 induced tamoxifen resistance invitro and invivo (MCF7 xenograft: tamoxifen-treated control, mean [SD] tumor volume = 70.8 [27.9] mm3, vs tamoxifen-treated RBP2, mean [SD] tumor volume = 387.9 [85.1] mm3, P < .001). Mechanistically, RBP2 cooperated with ER co-activators and corepressors and regulated several tamoxifen resistance-associated genes, including NRIP1, CCND1, and IGFBP4 and IGFBP5. Furthermore, epigenetic silencing of IGFBP4/5 by RBP2-ER-NRIP1-HDAC1 complex led to insulin-like growth factor-1 receptor (IGF1R) activation. RBP2 also increased IGF1R-ErbB crosstalk and subsequent PI3K-AKT activation via demethylase activity-independent ErbB protein stabilization. Combinational treatment with tamoxifen and PI3K inhibitor could overcome RBP2-mediated tamoxifen resistance (RBP2-overexpressing cells: % cell viability [SD], tamoxifen = 89.0 [3.8]%, vs tamoxifen with BKM120 = 41.3 [5.6]%, P < .001). Conclusions: RBP2 activates ER-IGF1R-ErbB signaling cascade in multiple ways to induce tamoxifen resistance, suggesting that RBP2 is a potential therapeutic target for ER-driven cancer.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/fisiologia , Receptores de Estrogênio/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Análise de Variância , Animais , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/química , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/patologia , Proteínas de Transporte/metabolismo , Estudos de Coortes , Colorimetria , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas , Proteínas Nucleares/metabolismo , Proteína 1 de Interação com Receptor Nuclear , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Receptor ErbB-2/metabolismo , Receptor IGF Tipo 1/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Tamoxifeno/uso terapêutico , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA