Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(3): e0173563, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28282457

RESUMO

The midgut in the freshwater shrimp Neocaridina davidi (previously named N. heteropoda) (Crustacea, Malacostraca) is composed of a tube-shaped intestine and a large hepatopancreas that is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous papers, while here we focused on the ultrastructural changes that occurred in the midgut epithelial cells (D-cells in the intestine, B- and F- cells in the hepatopancreas) after long-term starvation and re-feeding. We used transmission electron microscopy, light and confocal microscopes and flow cytometry to describe all of the changes that occurred due to the stressor with special emphasis on mitochondrial alterations. A quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is a relationship between starvation, re-feeding and the inactivation/activation of mitochondria. The results of our studies showed that in the freshwater shrimp N. davidi that were analyzed, long-term starvation activates the degeneration of epithelial cells at the ultrastructural level and causes an increase of cells with depolarized (non-active) mitochondria. The process of re-feeding leads to the gradual regeneration of the cytoplasm of the midgut epithelial cells; however, these changes were observed at the ultrastructural level. Additionally, re-feeding causes the regeneration of mitochondrial ultrastructure. Therefore, we can state that the increase in the number of cells with polarized mitochondria occurs slowly and does not depend on ultrastructural alterations.


Assuntos
Crustáceos/metabolismo , Ingestão de Alimentos , Mucosa Intestinal/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Inanição/metabolismo , Animais
2.
PLoS One ; 11(2): e0147582, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26844766

RESUMO

The endodermal region of the digestive system in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca) consists of a tube-shaped intestine and large hepatopancreas, which is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous studies, while here we focused on the cell death processes and their effect on the functioning of the midgut. We used transmission electron microscopy, light and confocal microscopes to describe and detect cell death, while a quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is the relationship between cell death and the inactivation of mitochondria. Three types of the cell death were observed in the intestine and hepatopancreas-apoptosis, necrosis and autophagy. No differences were observed in the course of these processes in males and females and or in the intestine and hepatopancreas of the shrimp that were examined. Our studies revealed that apoptosis, necrosis and autophagy only involves the fully developed cells of the midgut epithelium that have contact with the midgut lumen-D-cells in the intestine and B- and F-cells in hepatopancreas, while E-cells (midgut stem cells) did not die. A distinct correlation between the accumulation of E-cells and the activation of apoptosis was detected in the anterior region of the intestine, while necrosis was an accidental process. Degenerating organelles, mainly mitochondria were neutralized and eventually, the activation of cell death was prevented in the entire epithelium due to autophagy. Therefore, we state that autophagy plays a role of the survival factor.


Assuntos
Morte Celular , Decápodes , Hepatopâncreas/patologia , Mucosa Intestinal/patologia , Animais , Apoptose , Autofagia , Hepatopâncreas/metabolismo , Hepatopâncreas/ultraestrutura , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestrutura , Mitocôndrias/metabolismo , Necrose
3.
PLoS One ; 10(5): e0126900, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996951

RESUMO

The freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca, Decapoda) originates from Asia and is one of the species that is widely available all over the world because it is the most popular shrimp that is bred in aquaria. The structure and the ultrastructure of the midgut have been described using X-ray microtomography, transmission electron microscopy, light and fluorescence microscopes. The endodermal region of the alimentary system in N. heteropoda consists of an intestine and a hepatopancreas. No differences were observed in the structure and ultrastructure of males and females of the shrimp that were examined. The intestine is a tube-shaped organ and the hepatopancreas is composed of two large diverticles that are divided into the blind-end tubules. Hepatopancreatic tubules have three distinct zones - proximal, medial and distal. Among the epithelial cells of the intestine, two types of cells were distinguished - D and E-cells, while three types of cells were observed in the epithelium of the hepatopancreas - F, B and E-cells. Our studies showed that the regionalization in the activity of cells occurs along the length of the hepatopancreatic tubules. The role and ultrastructure of all types of epithelial cells are discussed, with the special emphasis on the function of the E-cells, which are the midgut regenerative cells. Additionally, we present the first report on the existence of an intercellular junction that is connected with the E-cells of Crustacea.


Assuntos
Decápodes , Endoderma/citologia , Endoderma/ultraestrutura , Trato Gastrointestinal/citologia , Trato Gastrointestinal/ultraestrutura , Animais , Endoderma/embriologia , Trato Gastrointestinal/embriologia
4.
Arthropod Struct Dev ; 43(1): 27-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23831526

RESUMO

Scolopendra cingulata has a tube-shaped digestive system that is divided into three distinct regions: fore-, mid- and hindgut. The midgut is lined with a pseudostratified columnar epithelium which is composed of digestive, secretory and regenerative cells. Hemocytes also appear between the digestive cells of the midgut epithelium. The ultrastructure of three types of epithelial cells and hemocytes of the midgut has been described with the special emphasis on the role of regenerative cells in the protection of midgut epithelium. The process of midgut epithelium regeneration proceeds due to the ability of regenerative cells to proliferate and differentiate according to a circadian rhythm. The regenerative cells serve as unipotent stem cells that divide in an asymmetric manner. Additionally, two types of hemocytes have been distinguished among midgut epithelial cells. They enter the midgut epithelium from the body cavity. Because of the fact that numerous microorganisms occur in the cytoplasm of midgut epithelial cells, we discuss the role of hemocytes in elimination of pathogens from the midgut epithelium. The studies were conducted with the use of transmission electron microscope and immunofluorescent methods.


Assuntos
Artrópodes/fisiologia , Artrópodes/ultraestrutura , Animais , Células Epiteliais/ultraestrutura , Feminino , Imunofluorescência , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/ultraestrutura , Mucosa Intestinal/fisiologia , Mucosa Intestinal/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Regeneração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA