Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Rep ; 40(7): 111218, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977518

RESUMO

Metabolic dysfunction mutations can impair energy sensing and cause cancer. Loss of function of the mitochondrial tricarboxylic acid (TCA) cycle enzyme subunit succinate dehydrogenase B (SDHB) results in various forms of cancer typified by pheochromocytoma (PC). Here we delineate a signaling cascade where the loss of SDHB induces the Warburg effect, triggers dysregulation of [Ca2+]i, and aberrantly activates calpain and protein kinase Cdk5, through conversion of its cofactor from p35 to p25. Consequently, aberrant Cdk5 initiates a phospho-signaling cascade where GSK3 inhibition inactivates energy sensing by AMP kinase through dephosphorylation of the AMP kinase γ subunit, PRKAG2. Overexpression of p25-GFP in mouse adrenal chromaffin cells also elicits this phosphorylation signaling and causes PC. A potent Cdk5 inhibitor, MRT3-007, reverses this phospho-cascade, invoking a senescence-like phenotype. This therapeutic approach halted tumor progression in vivo. Thus, we reveal an important mechanistic feature of metabolic sensing and demonstrate that its dysregulation underlies tumor progression in PC and likely other cancers.


Assuntos
Adenilato Quinase , Carcinoma Neuroendócrino , Adenilato Quinase/metabolismo , Animais , Quinase 5 Dependente de Ciclina/metabolismo , Metabolismo Energético , Quinase 3 da Glicogênio Sintase/metabolismo , Camundongos , Fosforilação , Succinatos
2.
Front Pharmacol ; 13: 863762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645825

RESUMO

Cyclin-dependent kinase 5 (Cdk5) is a crucial regulator of neuronal signal transduction. Cdk5 activity is implicated in various neuropsychiatric and neurodegenerative conditions such as stress, anxiety, depression, addiction, Alzheimer's disease, and Parkinson's disease. While constitutive Cdk5 knockout is perinatally lethal, conditional knockout mice display resilience to stress-induction, enhanced cognition, neuroprotection from stroke and head trauma, and ameliorated neurodegeneration. Thus, Cdk5 represents a prime target for treatment in a spectrum of neurological and neuropsychiatric conditions. While intracranial infusions or treatment of acutely dissected brain tissue with compounds that inhibit Cdk5 have allowed the study of kinase function and corroborated conditional knockout findings, potent brain-penetrant systemically deliverable Cdk5 inhibitors are extremely limited, and no Cdk5 inhibitor has been approved to treat any neuropsychiatric or degenerative diseases to date. Here, we screened aminopyrazole-based analogs as potential Cdk5 inhibitors and identified a novel analog, 25-106, as a uniquely brain-penetrant anti-Cdk5 drug. We characterize the pharmacokinetic and dynamic responses of 25-106 in mice and functionally validate the effects of Cdk5 inhibition on open field and tail-suspension behaviors. Altogether, 25-106 represents a promising preclinical Cdk5 inhibitor that can be systemically administered with significant potential as a neurological/neuropsychiatric therapeutic.

3.
ACS Omega ; 7(14): 12401-12411, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449901

RESUMO

The catechol derivative RC-12 (WR 27653) (1) is one of the few non-8-aminoquinolines with good activity against hypnozoites in the gold-standard Plasmodium cynomolgi-rhesus monkey (Macaca mulatta) model, but in a small clinical trial, it had no efficacy against Plasmodium vivax hypnozoites. In an attempt to better understand the pharmacokinetic and pharmacodynamic profile of 1 and to identify potential active metabolites, we now describe the phase I metabolism, rat pharmacokinetics, and in vitro liver-stage activity of 1 and its metabolites. Compound 1 had a distinct metabolic profile in human vs monkey liver microsomes, and the data suggested that the O-desmethyl, combined O-desmethyl/N-desethyl, and N,N-didesethyl metabolites (or a combination thereof) could potentially account for the superior liver stage antimalarial efficacy of 1 in rhesus monkeys vs that seen in humans. Indeed, the rate of metabolism was considerably lower in human liver microsomes in comparison to rhesus monkey microsomes, as was the formation of the combined O-desmethyl/N-desethyl metabolite, which was the only metabolite tested that had any activity against liver-stage P. vivax; however, it was not consistently active against liver-stage P. cynomolgi. As 1 and all but one of its identified Phase I metabolites had no in vitro activity against P. vivax or P. cynomolgi liver-stage malaria parasites, we suggest that there may be additional unidentified active metabolites of 1 or that the exposure of 1 achieved in the reported unsuccessful clinical trial of this drug candidate was insufficient to kill the P. vivax hypnozoites.

4.
Proc Natl Acad Sci U S A ; 119(18): e2115071119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476515

RESUMO

Activation of inhibitor of nuclear factor NF-κB kinase subunit-ß (IKKß), characterized by phosphorylation of activation loop serine residues 177 and 181, has been implicated in the early onset of cancer. On the other hand, tissue-specific IKKß knockout in Kras mutation-driven mouse models stalled the disease in the precancerous stage. In this study, we used cell line models, tumor growth studies, and patient samples to assess the role of IKKß and its activation in cancer. We also conducted a hit-to-lead optimization study that led to the identification of 39-100 as a selective mitogen-activated protein kinase kinase kinase (MAP3K) 1 inhibitor. We show that IKKß is not required for growth of Kras mutant pancreatic cancer (PC) cells but is critical for PC tumor growth in mice. We also observed elevated basal levels of activated IKKß in PC cell lines, PC patient-derived tumors, and liver metastases, implicating it in disease onset and progression. Optimization of an ATP noncompetitive IKKß inhibitor resulted in the identification of 39-100, an orally bioavailable inhibitor with improved potency and pharmacokinetic properties. The compound 39-100 did not inhibit IKKß but inhibited the IKKß kinase MAP3K1 with low-micromolar potency. MAP3K1-mediated IKKß phosphorylation was inhibited by 39-100, thus we termed it IKKß activation modulator (IKAM) 1. In PC models, IKAM-1 reduced activated IKKß levels, inhibited tumor growth, and reduced metastasis. Our findings suggests that MAP3K1-mediated IKKß activation contributes to KRAS mutation-associated PC growth and IKAM-1 is a viable pretherapeutic lead that targets this pathway.


Assuntos
MAP Quinase Quinase Quinase 1 , Neoplasias Pancreáticas , Humanos , Quinase I-kappa B/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Neoplasias Pancreáticas
5.
Eur J Med Chem ; 222: 113579, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34098465

RESUMO

Genetic models validated Inhibitor of nuclear factor (NF) kappa B kinase beta (IKKß) as a therapeutic target for KRAS mutation associated pancreatic cancer. Phosphorylation of the activation loop serine residues (S177, S181) in IKKß is a key event that drives tumor necrosis factor (TNF) α induced NF-κB mediated gene expression. Here we conducted structure activity relationship (SAR) study to improve potency and oral bioavailability of a quinoxaline analog 13-197 that was previously reported as a NFκB inhibitor for pancreatic cancer therapy. The SAR led to the identification of a novel quinoxaline urea analog 84 that reduced the levels of p-IKKß in dose- and time-dependent studies. When compared to 13-197, analog 84 was ∼2.5-fold more potent in TNFα-induced NFκB inhibition and ∼4-fold more potent in inhibiting pancreatic cancer cell growth. Analog 84 exhibited ∼4.3-fold greater exposure (AUC0-∞) resulting in ∼5.7-fold increase in oral bioavailability (%F) when compared to 13-197. Importantly, oral administration of 84 by itself and in combination of gemcitabine reduced p-IKKß levels and inhibited pancreatic tumor growth in a xenograft model.


Assuntos
Antineoplásicos/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/farmacologia , Ureia/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Quinase I-kappa B/metabolismo , Camundongos , Estrutura Molecular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química
7.
J Contemp Dent Pract ; 21(2): 190-196, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381826

RESUMO

AIM: The aim of the study was to evaluate the dimensional accuracy of three combinations of polyvinyl siloxane impression material by double-mix single-step impression technique. MATERIALS AND METHODS: Metal master model was made according to the ADA specification no. 19; ISO 4823:2000/AMD 2007. Impressions were made using perforated custom-made metallic trays of 2 mm and 4 mm spacing, the impression materials used were putty, heavy body, regular body and light body. A total of 30 impressions were made by single-step technique and poured in die stone to obtain resultant cast. Ten impressions were made of each combination of polyvinyl siloxane (PVS). Three dimensions (interabutment distance, height and diameter) on resultant cast were measured and compared with metal master model. The results were statistically analyzed and tabulated. RESULTS: Diameter of abutment, the height of abutment and interabutment distance in each group were larger in dimensions as compared with metal master model. The dimensional discrepancies of group I, group II and group III casts when compared with the master model were significantly different from each other. The least difference was found in group I. CONCLUSION: The one-step putty-light body combination (group I) produced the most accurate stone casts compared with one-step heavy body-light body and regular body-light body combinations. CLINICAL SIGNIFICANCE: In everyday dental practice, impression making is imperative. Hence, by doing this study, we tried to find out which material combination is suitable to give us predictable and accurate results.


Assuntos
Técnica de Moldagem Odontológica , Modelos Dentários , Polivinil , Siloxanas
8.
Chem Biol Drug Des ; 96(2): 773-784, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32237047

RESUMO

The release of an active drug from the prodrug generates a pro-fragment that typically has no biological activity and could result in adverse effects. By combining two drugs, wherein each drug acts as a pro-fragment of the other drug will eliminate the pro-fragment in the prodrug. As they are prodrugs of each other and are symbiotic, we termed these as symbiotic prodrugs (SymProDs). To test this idea, we generated SymProDs using NFκB inhibitors that contain the reactive α-methylene-γ-butyrolactone moiety and CDK inhibitors with solvent exposed secondary nitrogen atoms. We show that secondary amine prodrugs of α-methylene-γ-butyrolactone containing NFκB inhibitors undergo slow release over a 72 hr period. Using an alkyne-tagged secondary amine prodrug of α-methylene-γ-butyrolactone containing NFκB inhibitor, we demonstrate target engagement. The NFκB-CDK SymProDs were ~20- to 200-fold less active against the corresponding CDK inhibitors in in vitro CDK kinase assays. Growth inhibition studies in a panel of ovarian cancer cell lines revealed potency trends of the SymProDs mirrored those of the single treatments suggesting their dissociation in cells. In conclusion, our results suggest that SymProDs offer a productive path forward for advancing compounds with reactive functionality and can be used as dual targeting agents.


Assuntos
4-Butirolactona/análogos & derivados , Antineoplásicos/síntese química , Quinases Ciclina-Dependentes/metabolismo , NF-kappa B/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Pró-Fármacos/química , Inibidores de Proteínas Quinases/síntese química , 4-Butirolactona/síntese química , 4-Butirolactona/farmacologia , Aminas/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Terapia de Alvo Molecular , Piperazinas/síntese química , Piperazinas/metabolismo , Piperidinas/síntese química , Piperidinas/metabolismo , Pró-Fármacos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/síntese química , Pirazóis/metabolismo , Piridinas/síntese química , Piridinas/metabolismo , Sesquiterpenos/síntese química , Sesquiterpenos/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade
9.
Mol Pharmacol ; 96(4): 419-429, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31467029

RESUMO

Developing small molecules that indirectly regulate Mcl-1 function has attracted a lot of attention in recent years. Here, we report the discovery of an aminopyrazole, 2-([1,1'-biphenyl]-4-yl)-N-(5-cyclobutyl-1H-pyrazol-3-yl)acetamide (analog 24), which selectively inhibited cyclin-dependent kinase (CDK) 5 over CDK2 in cancer cell lines. We also show that analog 24 reduced Mcl-1 levels in a concentration-dependent manner in cancer cell lines. Using a panel of doxycycline inducible cell lines, we show that CDK5 inhibitor 24 selectively modulates Mcl-1 function while the CDK4/6 inhibitor 6-acetyl-8-cyclopentyl-5-methyl-2-(5-(piperazin-1-yl)pyridin-2-ylamino)pyrido[2,3-day]pyrimidin-7(8H)-one does not. Previous studies using RNA interference and CRISPR showed that concurrent elimination of Bcl-xL and Mcl-1 resulted in induction of apoptosis. In pancreatic cancer cell lines, we show that either CDK5 knockdown or expression of a dominant negative CDK5 results in synergistic induction of apoptosis. Moreover, concurrent pharmacological perturbation of Mcl-1 and Bcl-xL in pancreatic cancer cell lines using a CDK5 inhibitor analog 24 that reduced Mcl-1 levels and 4-(4-{[2-(4-chlorophenyl)-5,5-dimethyl-1-cyclohexen-1-yl]methyl}-1-piperazinyl)-N-[(4-{[(2R)-4-(4-morpholinyl)-1-(phenylsulfanyl)-2-butanyl]amino}-3-[(trifluoromethyl)sulfonyl]phenyl)sulfonyl] benzamide (navitoclax), a Bcl-2/Bcl-xL/Bcl-w inhibitor, resulted in synergistic inhibition of cell growth and induction of apoptosis. In conclusion, we demonstrate targeting CDK5 will sensitize pancreatic cancers to Bcl-2 protein inhibitors. SIGNIFICANCE STATEMENT: Mcl-1 is stabilized by CDK5-mediated phosphorylation in pancreatic ductal adenocarcinoma, resulting in the deregulation of the apoptotic pathway. Thus, genetic or pharmacological targeting of CDK5 sensitizes pancreatic cancers to Bcl-2 inhibitors, such as navitoclax.


Assuntos
Compostos de Anilina/farmacologia , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias Pancreáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 5 Dependente de Ciclina/genética , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Inibidores de Proteínas Quinases/química , Pirazóis/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
10.
Int J Pharm ; 565: 242-257, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31077762

RESUMO

Encapsulation of protein vaccines in biodegradable nanoparticles (NP) increases T-cell expansion after mucosal immunization but requires incorporating a suitable immunostimulant to increase long-lived memory T-cells. EP67 is a clinically viable, host-derived peptide agonist of the C5a receptor that selectively activates antigen presenting cells over neutrophils. We previously found that encapsulating EP67-conjugated CTL peptide vaccines in NP increases long-lived memory subsets of CTL after respiratory immunization. Thus, we hypothesized that alternatively conjugating EP67 to the NP surface can increase long-lived mucosal and systemic memory T-cells generated by encapsulated protein vaccines. We found that respiratory immunization of naïve female C57BL/6 mice with LPS-free ovalbumin (OVA) encapsulated in PLGA 50:50 NP (∼380 nm diameter) surface-conjugated with ∼0.1 wt% EP67 through 2 kDa PEG linkers (i) increased T-cell expansion and long-lived memory subsets of OVA323-339-specific CD4+ and OVA257-264-specific CD8a+ T-cells in the lungs (CD44HI/CD127/KLRG1) and spleen (CD44HI/CD127/KLRG1/CD62L) and (ii) decreased peak CFU of OVA-expressing L. monocytogenes (LM-OVA) in the lungs, liver, and spleen after respiratory challenge vs. encapsulation in unmodified NP. Thus, conjugating EP67 to the NP surface is one approach to increase the generation of long-lived mucosal and systemic memory T-cells by encapsulated protein vaccines after respiratory immunization.


Assuntos
Nanopartículas/administração & dosagem , Oligopeptídeos/administração & dosagem , Ovalbumina/administração & dosagem , Infecções Respiratórias/prevenção & controle , Linfócitos T/efeitos dos fármacos , Vacinas/administração & dosagem , Animais , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Imunização , Memória Imunológica , Masculino , Camundongos Endogâmicos C57BL , Mucosa/imunologia , Nanopartículas/química , Oligopeptídeos/química , Ovalbumina/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Baço/citologia , Propriedades de Superfície , Linfócitos T/imunologia , Vacinas/química
12.
J Pain Res ; 11: 1075-1085, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922083

RESUMO

PURPOSE: Search for alternate pain medications has gained more importance in the past few years due to adverse effects associated with currently prescribed drugs including nervous system dysfunction with opioids, gastrointestinal discomfort with nonsteroidal anti-inflammatory drugs, and cardiovascular anomalies with cyclooxygenase-2 (COX-2) inhibitors. Phytomedicine has been explored for the treatment of pain, as these have been used for generations in regional communities and tend to lack major side effects in general. One such phytomedicine, incarvillateine (INCA), derived from the Chinese herb Incarvillea sinensis has its primary antinociceptive action through the adenosine receptor, a novel pain target. We hypothesized that derivatives of cinnamic acid dimers, which are structurally similar to INCA, would show potent antinociceptive action and that their effect would be mediated through adenosine receptor action. MATERIALS AND METHODS: Dimers of cinnamic acid (INCA analogs) were synthesized using cavitand-mediated photodimerization (CMP) method, which utilizes a macromolecule (γ-cyclodextrin) to control excited state reactivity of photoactive compounds. Acute pain response was assessed by using formalin-induced licking behavior in hind paw of mice, and neurologic function was monitored through locomotor activity, mechanical hyperalgesia, and thermal sensitivity upon administration of test compound. For mechanistic studies, binding to adenosine receptor was determined by using computer modeling. RESULTS: Ferulic acid dimer (FAD), which has the same chemical functionalities on the aromatic ring as INCA, showed significant suppression of formalin-induced acute pain. Antinociceptive effect was observed primarily in the inflammatory phase, and no apparent behavioral changes related to the nervous system were noticeable. Inhibition of opioid receptor did not reverse antinociceptive response, and modeling data suggest adenosine 3 receptor binding. CONCLUSION: FAD (INCA analog) shows potent nonopioid antinociceptive action mediated predominantly through A3AR - adenosine 3 receptor action. Further characterization and selection of such INCA analogs will help us generate a new class of antinociceptives with precise chemical modifications by using CMP methodology.

13.
ACS Chem Biol ; 13(5): 1148-1152, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29608269

RESUMO

The study presented here provides a framework for the discovery of unique inhibitor combinations that target the apoptosis network for cancer therapy. A pair of doxycycline (Dox)-inducible cell lines that specifically report on the ability of an inhibitor to induce apoptosis by targeting either the Mcl-1 arm or the Bcl-2/Bcl-xL/Bcl-w arm were used. Cell-based assays were optimized for high throughput screening (HTS) with caspase 3/7 as a read out. HTS with a 355-member kinase inhibitor library and the panel of Dox-inducible cell lines revealed that cyclin dependent kinase (CDK) inhibitors induced apoptosis by targeting the Mcl-1 arm, whereas PI3K inhibitors induced apoptosis by targeting the Bcl-2/Bcl-xL/Bcl-w arm. Validation studies identified unique combinations that synergistically inhibited growth and induced apoptosis in a panel of cancer cell lines. Since these inhibitors have been or are currently in clinical trials as single agents, the combinations can be rapidly translated to the clinics.


Assuntos
Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Quimioterapia Combinada , Ensaios de Triagem em Larga Escala , Humanos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
14.
Oncotarget ; 9(4): 5216-5232, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435174

RESUMO

Colorectal cancer (CRC) remains one of the leading causes of cancer related deaths in the United States. Currently, there are limited therapeutic options for patients suffering from CRC, none of which focus on the cell signaling mechanisms controlled by the popular kinase family, cyclin dependent kinases (CDKs). Here we evaluate a Pfizer developed compound, CP668863, that inhibits cyclin-dependent kinase 5 (CDK5) in neurodegenerative disorders. CDK5 has been implicated in a number of cancers, most recently as an oncogene in colorectal cancers. Our lab synthesized and characterized CP668863 - now called 20-223. In our established colorectal cancer xenograft model, 20-223 reduced tumor growth and tumor weight indicating its value as a potential anti-CRC agent. We subjected 20-223 to a series of cell-free and cell-based studies to understand the mechanism of its anti-tumor effects. In our hands, in vitro 20-223 is most potent against CDK2 and CDK5. The clinically used CDK inhibitor AT7519 and 20-223 share the aminopyrazole core and we used it to benchmark the 20-223 potency. In CDK5 and CDK2 kinase assays, 20-223 was ∼3.5-fold and ∼65.3-fold more potent than known clinically used CDK inhibitor, AT7519, respectively. Cell-based studies examining phosphorylation of downstream substrates revealed 20-223 inhibits the kinase activity of CDK5 and CDK2 in multiple CRC cell lines. Consistent with CDK5 inhibition, 20-223 inhibited migration of CRC cells in a wound-healing assay. Profiling a panel of CRC cell lines for growth inhibitory effects showed that 20-223 has nanomolar potency across multiple CRC cell lines and was on an average >2-fold more potent than AT7519. Cell cycle analyses in CRC cells revealed that 20-223 phenocopied the effects associated with AT7519. Collectively, these findings suggest that 20-223 exerts anti-tumor effects against CRC by targeting CDK 2/5 and inducing cell cycle arrest. Our studies also indicate that 20-223 is a suitable lead compound for colorectal cancer therapy.

15.
Curr Med Chem ; 24(40): 4488-4514, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28901269

RESUMO

BACKGROUND: Anti-apoptotic members of the Bcl-2 family of proteins are upregulated in a majority of cancers and are potential therapeutic targets. Fragment-based design led to the development of clinical candidates that target Bcl-xL/Bcl-2. Although these BclxL/ Bcl-2 inhibitors showed promise in pre-clinical studies, resistance to several Bcl-xL inhibitors was observed, when used alone. This is attributed to the over-expression of Mcl-1, another member of the Bcl-2 family of proteins. Indeed, Mcl-1 is highly amplified in numerous cancers, suggesting that it may contribute to malignant cell growth and evasion of apoptosis. Therefore, significant efforts have been made toward the development of direct Mcl-1 inhibitors for cancer therapy. METHODS: Following an extensive search of peer-reviewed articles on the development of Mcl-1-selective inhibitors, the literature retrieved is chronologically arranged and discussed in this review article. RESULTS: We have included 147 articles in this review; including articles that describe the development of stapled peptides with improved binding affinity as Mcl-1-selective BH3 mimetics, those describing fragment-based and structure-based design of small molecule Mcl-1 inhibitors by various research groups, and those detailing the use of natural products and their derivatives as potential Mcl-1 inhibitors. CONCLUSION: The therapeutic potential of targeting the Mcl-1 protein for cancer drug discovery is vast. Stapling BH3 peptides, as well as the development of small molecule inhibitors as BH3 mimetics, are viable strategies to develop selective Mcl-1 inhibitors. With no clinically approved candidate in hand, additional modes of perturbing the biological function of this protein will aid drug discovery efforts.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Desenho de Fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Animais , Humanos , Leucemia Mieloide/tratamento farmacológico
16.
Chem Commun (Camb) ; 53(54): 7577-7580, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28636052

RESUMO

Cyclin-dependent kinase 9 (CDK9), a member of the cyclin-dependent protein kinase (CDK) family, is involved in transcriptional elongation of several target genes. CDK9 is ubiquitously expressed and has been shown to contribute to a variety of malignancies such as pancreatic, prostate and breast cancers. Here we report the development of a heterobifunctional small molecule proteolysis targeting chimera (PROTAC) capable of cereblon (CRBN) mediated proteasomal degradation of CDK9. In HCT116 cells, it selectively degrades CDK9 while sparing other CDK family members. This is the first example of a PROTAC that selectively degrades CDK9.

17.
Bioorg Med Chem Lett ; 27(9): 1886-1891, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28359789

RESUMO

According to WHO, leishmaniasis is a major tropical disease, ranking second after malaria. Significant efforts have been therefore invested into finding potent inhibitors for the treatment. In this work, eighteen novel 1,2,3-triazoles appended with l-amino acid (Phe/Pro/Trp) tail were synthesized via azide-alkyne click chemistry with moderate to good yield, and evaluated for their anti-leishmanial activity against promastigote form of Leishmania donovani (Dd8 strain). Among all, compounds 40, 43, and 53 were identified with promising anti-leishmanial activity with IC50=88.83±2.93, 96.88±12.88 and 94.45±6.51µM respectively and displayed no cytotoxicity towards macrophage cells. Moreover, compound 43 showed highest selectivity index (SI=8.05) among all the tested compounds. Supported by docking studies, the lead inhibitors (40, 43 and 53) showed interactions with key residues in the catalytic site of trypanothione reductase. The results of pharmacokinetic parameters suggest that these selected inhibitors can be carried forward for further structural optimization and pharmacological investigation.


Assuntos
Aminoácidos/química , Aminoácidos/farmacologia , Antiprotozoários/química , Antiprotozoários/farmacologia , Leishmania donovani/efeitos dos fármacos , Triazóis/química , Triazóis/farmacologia , Química Click , Humanos , Leishmania donovani/enzimologia , Leishmaniose/tratamento farmacológico , Simulação de Acoplamento Molecular , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo
18.
Oncotarget ; 8(21): 34586-34600, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28410221

RESUMO

Aberrant activation of Rho GTPase Rac1 has been observed in various tumor types, including pancreatic cancer. Rac1 activates multiple signaling pathways that lead to uncontrolled proliferation, invasion and metastasis. Thus, inhibition of Rac1 activity is a viable therapeutic strategy for proliferative disorders such as cancer. Here we identified small molecule inhibitors that target the nucleotide-binding site of Rac1 through in silico screening. Follow up in vitro studies demonstrated that two compounds blocked active Rac1 from binding to its effector PAK1. Fluorescence polarization studies indicate that these compounds target the nucleotide-binding site of Rac1. In cells, both compounds blocked Rac1 binding to its effector PAK1 following EGF-induced Rac1 activation in a dose-dependent manner, while showing no inhibition of the closely related Cdc42 and RhoA activity. Furthermore, functional studies indicate that both compounds reduced cell proliferation and migration in a dose-dependent manner in multiple pancreatic cancer cell lines. Additionally, the two compounds suppressed the clonogenic survival of pancreatic cancer cells, while they had no effect on the survival of normal pancreatic ductal cells. These compounds do not share the core structure of the known Rac1 inhibitors and could serve as additional lead compounds to target pancreatic cancers with high Rac1 activity.


Assuntos
Neoplasias Pancreáticas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Ligação Proteica/efeitos dos fármacos , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/química , Proteína rhoA de Ligação ao GTP/metabolismo
19.
ACS Med Chem Lett ; 8(11): 1183-1187, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29375750

RESUMO

EPAC proteins are therapeutic targets for the potential treatment of cardiac hypertrophy and cancer metastasis. Several laboratories use a tetrahydroquinoline analog, CE3F4, to dissect the role of EPAC1 in various disease states. Here, we report SAR studies with tetrahydroquinoline analogs that explore various functional groups. The most potent EPAC inhibitor 12a exists as a mixture of inseparable E (major) and Z (minor) rotamers. The rotation about the N-formyl group indeed impacts the activity against EPAC.

20.
J. res. dent ; 4(3): 67-72, may-jun.2016.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1362948

RESUMO

Aim: To find the marginal fit of the porcelain fused to metal crowns by two different margin designs (shoulder and chamfer) and two commercially available base metal alloys. Material and Methods: Tooth preparation of first central incisor for porcelain-fused-to-metal crown with shoulder margin and second incisor for porcelain-fused-to-metal crown with chamfer margin was done. Wax pattern of the same was prepared. Impression of both prepared ivorine incisors was made by light body impression material and poured with pattern resin. Both the patterns were invested and casted with cobalt chromium alloy for making master dies. Two wax patterns of unprepared central incisors were fabricated, one with shoulder margin and another with chamfer margin. These patterns were then cut back to the size of the coping. Four rings were invested. In each ring ten patterns, five with shoulder margin and five with deep chamfer margin were sprued together to ensure that each group would pass through the same investing and casting procedure, followed by ceramic firing and measurement. Results: Marginal fit change or marginal discrepancy (before and after firing) between the groups was highly significant. Conclusions: Veneered crowns exhibited highly significant marginal distortion than non- veneered copings after porcelain firing. Shoulder margin is better in minimizing marginal discrepancy compared to deep chamfer margin. Marginal discrepancy is less when cerabond base metal alloy is used with shoulder margin as compared to commend base metal alloy used for shoulder margin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA