Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 87(4): 043503, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27131670

RESUMO

In TST-2 Ohmic discharges, local current is measured using a Rogowski probe by changing the angle between the local magnetic field and the direction of the hole of the Rogowski probe. The angular dependence shows a peak when the direction of the hole is almost parallel to the local magnetic field. The obtained width of the peak was broader than that of the theoretical curve expected from the probe geometry. In order to explain this disagreement, we consider the effect of sheath in the vicinity of the Rogowski probe. A sheath model was constructed and electron orbits were numerically calculated. From the calculation, it was found that the electron orbit is affected by E × B drift due to the sheath electric field. Such orbit causes the broadening of the peak in the angular dependence and the dependence agrees with the experimental results. The dependence of the broadening on various plasma parameters was studied numerically and explained qualitatively by a simplified analytical model.

2.
Rev Sci Instrum ; 85(11): 11D813, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430226

RESUMO

A Rogowski probe consisting of a small multi-layer Rogowski coil, five magnetic pick-up coils, and a Langmuir probe was developed to measure the local current density and its direction. It can be moved along the major radius and can be turned around its axis. This probe was used to measure the current density profile near the last closed flux surface of Ohmic plasmas in Tokyo Spherical Tokamak-2. The current density profile was measured successfully with a signal to noise ratio of greater than 20.

3.
Rev Sci Instrum ; 85(11): 11D846, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430259

RESUMO

The multi-pass Thomson scattering (TS) scheme enables obtaining many photons by accumulating multiple TS signals. The signal-to-noise ratio (SNR) depends on the accumulation number. In this study, we performed multi-pass TS measurements for ohmically heated plasmas, and the relationship between SNR and the accumulation number was investigated. As a result, improvement of SNR in this experiment indicated similar tendency to that calculated for the background noise dominant situation.

4.
Rev Sci Instrum ; 85(5): 056103, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24880428

RESUMO

In multi-pass Thomson scattering (TS) scheme, a laser pulse makes multiple round trips through the plasma, and the effective laser energy is enhanced, and we can increase the signal-to-noise ratio as a result. We have developed a coaxial optical cavity in which a laser pulse is confined, and we performed TS measurements using the coaxial cavity in tokamak plasmas for the first time. In the optical cavity, the laser energy attenuation was approximately 30% in each round trip, and we achieved a photon number gain of about 3 compared with that obtained in the first round trip. In addition, the temperature measurement accuracy was improved by accumulating the first three round trip waveforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA