Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1397683, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650885

RESUMO

Freshwater wetlands are the wetland ecosystems surrounded by freshwater, which are at the interface of terrestrial and freshwater ecosystems, and are rich in ecological composition and function. Biodiversity in freshwater wetlands plays a key role in maintaining the stability of their habitat functions. Due to anthropogenic interference and global change, the biodiversity of freshwater wetlands decreases, which in turn destroys the habitat function of freshwater wetlands and leads to serious degradation of wetlands. An in-depth understanding of the effects of biodiversity on the stability of habitat function and its regulation in freshwater wetlands is crucial for wetland conservation. Therefore, this paper reviews the environmental drivers of habitat function stability in freshwater wetlands, explores the effects of plant diversity and microbial diversity on habitat function stability, reveals the impacts and mechanisms of habitat changes on biodiversity, and further proposes an outlook for freshwater wetland research. This paper provides an important reference for freshwater wetland conservation and its habitat function enhancement.

2.
Front Microbiol ; 15: 1354279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450168

RESUMO

The over-utilizing of nitrogen fertilizers in paddy wetlands potentially threatens to the surrounding waterbody, and a deep understanding of the community and function of microorganisms is crucial for paddy non-point source pollution control. In this study, top soil samples (0-15 cm) of paddy wetlands under groundwater's irrigation at different depths (H1: 6.8 m, H2: 13.7 m, H3: 14.8 m, H4: 15.6 m, H5: 17.0 m, and H6: 17.8 m) were collected to investigate microbial community and function differences and their interrelation with soil properties. Results suggested some soil factor differences for groundwater's irrigation at different depths. Deep-groundwater's irrigation (H2-H6) was beneficial to the accumulation of various electron acceptors. Nitrifying-bacteria Ellin6067 had high abundance under deep groundwater irrigation, which was consistent with its diverse metabolic capacity. Meanwhile, denitrifying bacteria had diverse distribution patterns. Iron-reducing bacteria Geobacter was abundant in H1, and Anaeromyxobacter was abundant under deep groundwater irrigation; both species could participate in Fe-anammox. Furthermore, Geobacter could perform dissimilatory nitrate reduction to ammonia using divalent iron and provide substrate supply for anammox. Intrasporangium and norank_f_Gemmatimonadacea had good chromium- and vanadium-reducting potentials and could promote the occurrence of anammox. Low abundances of methanotrophs Methylocystis and norank_f_Methyloligellaceae were associated with the relatively anoxic environment of paddy wetlands, and the presence of aerobic methane oxidation was favorable for in-situ methane abatement. Moisture, pH, and TP had crucial effects on microbial community under phylum- and genus-levels. Microorganisms under shallow groundwater irrigation were highly sensitive to environmental changes, and Fe-anammox, nitrification, and methane oxidation were favorable under deep groundwater irrigation. This study highlights the importance of comprehensively revealing the microbial community and function of paddy wetlands under groundwater's irrigation and reveals the underlying function of indigenous microorganisms in agricultural non-point pollution control and greenhouse gas abatement.

3.
Chemosphere ; 345: 140556, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890796

RESUMO

Nitrogen and chromium (Cr(VI)) pollution in waterbodies pose great threats to human health, and a cost-effective alternative with Cr(VI) and nitrogen simultaneous removal is still needed. This study investigated the influence of Cr(VI) on nitrogen removal in the two-stage vertical-flow constructed wetlands (TS-VFCWs) along with iron ore and woodchip, and explored relationship between Cr(VI) and nitrogen removal. The results showed that efficient Cr(VI) and nitrogen removal were simultaneously achieved in TS-VFCWs together with iron-ore and woodchip under 2 mg/L-Cr(VI), whereas 10 mg/L-Cr(VI) gave significant and recoverable inhibition of nitrogen removal. Cr(VI) supplementation promoted the beneficiation of Cr(VI)-reducing/resistant bacteria IMCC26207 and Bryobacter on iron-ore. Woodchip enriched Cr(VI)-reducing bacteria Streptomyces and Thiobacillus. XRD and XPS showed that abundant bound-Cr existed in the surface of iron ore and woodchip, and Cr(III) precipitation/oxide was the major product. High abundances of nitrifying and autotrophic/heterotrophic denitrifying bacteria ensured good nitrogen removal at Cr(VI) stress.


Assuntos
Cromatos , Microbiota , Humanos , Desnitrificação , Áreas Alagadas , Nitrogênio , Bactérias , Ferro
4.
Front Microbiol ; 14: 1163896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333635

RESUMO

Coastal wetlands (CW) are the junction of the terrestrial and marine ecosystems and have special ecological compositions and functions, which are important for maintaining biogeochemical cycles. Microorganisms inhabiting in sediments play key roles in the material cycle of CW. Due to the variable environment of CW and the fact that most CW are affected by human activities and climate change, CW are severely degraded. In-depth understanding of the community structure, function, and environmental potential of microorganisms in CW sediments is essential for wetland restoration and function enhancement. Therefore, this paper summarizes microbial community structure and its influencing factors, discusses the change patterns of microbial functional genes, reveals the potential environmental functions of microorganisms, and further proposes future prospects about CW studies. These results provide some important references for promoting the application of microorganisms in material cycling and pollution remediation of CW.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA