Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Vaccine ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38834429

RESUMO

Vaccines represent an effective tool for controlling disease infection. As a key component of vaccines, many types of adjuvants have been developed and used today. This study is designed to investigate the efficacy of single-walled carbon nanotubes (SWCNTs) as a new adjuvant. The results showed that SWCNT could adsorb the antigen by intermolecular action, and the adsorption rate was significantly higher after dispersion of the SWCNTs in a sonic bath. The titer of specific antibody of mice in the SWCNTs group was higher than that of the mice in the antigen control group, confirming the adjuvant efficacy of SWCNTs. During immunisation, the specific antibody was detected earlier in the mice of the SWCNTs group, especially when the amount of antigen was reduced. And it was proved that the titer of antibodies was higher after subcutaneous and intraperitoneal injection compared to intramuscular injection. Most importantly, the mice immunised with SWCNTs showed almost the same level of immunity as the mice in the FCA (Freund's complete adjuvant) group, indicating that the SWCNTs were an effective adjuvant. In addition, the mice in the SWCNT group maintained antibody levels for 90 days after the last booster vaccination and showed a good state of health during the observed period. We also found that the SWCNTs were able to induce macrophages activation and enhance antigen uptake by mouse peritoneal macrophages.

2.
J Virol ; 98(5): e0001624, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38563732

RESUMO

Tumor necrosis factor receptor-associated factor family member-associated NF-κB activator-binding kinase 1 (TBK1) plays a key role in the induction of the type 1 interferon (IFN-I) response, which is an important component of innate antiviral defense. Viruses target calcium (Ca2+) signaling networks, which participate in the regulation of the viral life cycle, as well as mediate the host antiviral response. Although many studies have focused on the role of Ca2+ signaling in the regulation of IFN-I, the relationship between Ca2+ and TBK1 in different infection models requires further elucidation. Here, we examined the effects of the Newcastle disease virus (NDV)-induced increase in intracellular Ca2+ levels on the suppression of host antiviral responses. We demonstrated that intracellular Ca2+ increased significantly during NDV infection, leading to impaired IFN-I production and antiviral immunity through the activation of calcineurin (CaN). Depletion of Ca²+ was found to lead to a significant increase in virus-induced IFN-I production resulting in the inhibition of viral replication. Mechanistically, the accumulation of Ca2+ in response to viral infection increases the phosphatase activity of CaN, which in turn dephosphorylates and inactivates TBK1 in a Ca2+-dependent manner. Furthermore, the inhibition of CaN on viral replication was counteracted in TBK1 knockout cells. Together, our data demonstrate that NDV hijacks Ca2+ signaling networks to negatively regulate innate immunity via the CaN-TBK1 signaling axis. Thus, our findings not only identify the mechanism by which viruses exploit Ca2+ signaling to evade the host antiviral response but also, more importantly, highlight the potential role of Ca2+ homeostasis in the viral innate immune response.IMPORTANCEViral infections disrupt intracellular Ca2+ homeostasis, which affects the regulation of various host processes to create conditions that are conducive for their own proliferation, including the host immune response. The mechanism by which viruses trigger TBK1 activation and IFN-I induction through viral pathogen-associated molecular patterns has been well defined. However, the effects of virus-mediated Ca2+ imbalance on the IFN-I pathway requires further elucidation, especially with respect to TBK1 activation. Herein, we report that NDV infection causes an increase in intracellular free Ca2+ that leads to activation of the serine/threonine phosphatase CaN, which subsequently dephosphorylates TBK1 and negatively regulates IFN-I production. Furthermore, depletion of Ca2+ or inhibition of CaN activity exerts antiviral effects by promoting the production of IFN-I and inhibiting viral replication. Thus, our results reveal the potential role of Ca2+ in the innate immune response to viruses and provide a theoretical reference for the treatment of viral infectious diseases.


Assuntos
Calcineurina , Cálcio , Imunidade Inata , Vírus da Doença de Newcastle , Proteínas Serina-Treonina Quinases , Replicação Viral , Animais , Humanos , Calcineurina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Células HEK293 , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Doença de Newcastle/metabolismo , Vírus da Doença de Newcastle/imunologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética
3.
iScience ; 27(2): 108962, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38322989

RESUMO

Newcastle disease is a global problem that causes huge economic losses and threatens the health and welfare of poultry. Despite the knowledge gained on the metabolic impact of NDV on cells, the extent to which infection modifies the plasma metabolic network in chickens remains unknown. Herein, we performed targeted metabolomic and lipidomic to create a plasma metabolic network map during NDV infection. Meanwhile, we used single-cell RNA sequencing to explore the heterogeneity of lung tissue cells in response to NDV infection in vivo. The results showed that NDV remodeled the plasma phospholipid metabolism network. NDV preferentially targets infected blood endothelial cells, antigen-presenting cells, fibroblasts, and neutrophils in lung tissue. Importantly, NDV may directly regulate ribosome protein transcription to facilitate efficient viral protein translation. In conclusion, NDV infection remodels the plasma phospholipid metabolism network in chickens. This work provides valuable insights to further understand the pathogenesis of NDV.

4.
J Virol ; 98(3): e0189723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411946

RESUMO

Ferroptosis, a form of programmed cell death characterized by iron-dependent lipid peroxidation, has recently gained considerable attention in the field of cancer therapy. There is significant crosstalk between ferroptosis and several classical signaling pathways, such as the Hippo pathway, which suppresses abnormal growth and is frequently aberrant in tumor tissues. Yes-associated protein 1 (YAP), the core effector molecule of the Hippo pathway, is abnormally expressed and activated in a variety of malignant tumor tissues. We previously proved that the oncolytic Newcastle disease virus (NDV) activated ferroptosis to kill tumor cells. NDV has been used in tumor therapy; however, its oncolytic mechanism is not completely understood. In this study, we demonstrated that NDV exacerbated ferroptosis in tumor cells by inducing ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Blocking YAP degradation suppressed NDV-induced ferroptosis by suppressing the expression of Zrt/Irt-like protein 14 (ZIP14), a metal ion transporter that regulates iron uptake. These findings demonstrate that NDV exacerbated ferroptosis in tumor cells by inducing YAP degradation. Our study provides new insights into the mechanism of NDV-induced ferroptosis and highlights the critical role that oncolytic viruses play in the treatment of drug-resistant cancers.IMPORTANCEThe oncolytic Newcastle disease virus (NDV) is being developed for use in cancer treatment; however, its oncolytic mechanism is still not completely understood. The Hippo pathway, which is a tumor suppressor pathway, is frequently dysregulated in tumor tissues due to aberrant yes-associated protein 1 (YAP) activation. In this study, we have demonstrated that NDV degrades YAP to induce ferroptosis and promote virus replication in tumor cells. Notably, NDV was found to induce ubiquitin-mediated degradation of YAP at Lys90 through E3 ubiquitin ligase parkin (PRKN). Our study reveals a new mechanism by which NDV induces ferroptosis and provides new insights into NDV as an oncolytic agent for cancer treatment.


Assuntos
Ferroptose , Neoplasias , Vírus da Doença de Newcastle , Terapia Viral Oncolítica , Proteínas de Sinalização YAP , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Linhagem Celular Tumoral , Ferro , Neoplasias/terapia , Vírus Oncolíticos/fisiologia , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases , Ubiquitinas
5.
Antiviral Res ; 221: 105786, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147902

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery plays a significant role in the spread of human viruses. However, our understanding of how the host ESCRT machinery responds to viral infection remains limited. Emerging evidence suggests that the ESCRT machinery can be hijacked by viruses of different families to enhance their replication. Throughout their life cycle, these viruses can interfere with or exploit ESCRT-mediated physiological processes to increase their chances of infecting the host. In contrast, to counteract virus infection, the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) system within the infected cells is activated to degrade the ESCRT proteins. Many retroviral and RNA viral proteins have evolved "late (L) domain" motifs, which enable them to recruit host ESCRT subunit proteins to facilitate virus transport, replication, budding, mature, and even endocytosis, Therefore, the L domain motifs and ESCRT subunit proteins could serve as promising drug targets for antiviral therapy. This review investigated the composition and essential functions of the ESCRT, shedding light on the impact of ESCRT subunits and viral L domain motifs on the replication of viruses. Furthermore, the antiviral effects facilitated by the ESCRT machinery have been investigated, aiming to provide valuable insights to guide the development and utilization of antiviral drugs.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Viroses , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Transporte Proteico , Proteínas Virais/metabolismo , Interferons/metabolismo , Ubiquitina-Proteína Ligases , Replicação Viral , Liberação de Vírus
6.
Viruses ; 15(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37896778

RESUMO

Although the involvement of the ubiquitin-proteasome system (UPS) in several coronavirus-productive infections has been reported, whether the UPS is required for infectious bronchitis virus (IBV) and porcine epidemic diarrhea virus (PEDV) infections is unclear. In this study, the role of UPS in the IBV and PEDV life cycles was investigated. When the UPS was suppressed by pharmacological inhibition at the early infection stage, IBV and PEDV infectivity were severely impaired. Further study showed that inhibition of UPS did not change the internalization of virus particles; however, by using R18 and DiOC-labeled virus particles, we found that inhibition of UPS prevented the IBV and PEDV membrane fusion with late endosomes or lysosomes. In addition, proteasome inhibitors blocked the degradation of the incoming viral protein N, suggesting the uncoating process and genomic RNA release were suppressed. Subsequently, the initial translation of genomic RNA was blocked. Thus, UPS may target the virus-cellular membrane fusion to facilitate the release of incoming viruses from late endosomes or lysosomes, subsequently blocking the following virus uncoating, initial translation, and replication events. Similar to the observation of proteasome inhibitors, ubiquitin-activating enzyme E1 inhibitor PYR-41 also impaired the entry of IBV, enhanced the accumulation of ubiquitinated proteins, and depleted mono-ubiquitin. In all, this study reveals an important role of UPS in coronavirus entry by preventing membrane fusion and identifies UPS as a potential target for developing antiviral therapies for coronavirus.


Assuntos
Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Animais , Suínos , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular , Ubiquitina/metabolismo , Coronavirus/genética , Inibidores de Proteassoma/farmacologia , Fusão de Membrana , Endossomos/metabolismo , Vírus da Diarreia Epidêmica Suína/genética , RNA , Replicação Viral
7.
Microbiol Spectr ; 11(3): e0512122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191506

RESUMO

Newcastle disease virus (NDV) is an avian paramyxovirus that causes major economic losses to the poultry industry around the world, with NDV pathogenicity varying due to strain virulence differences. However, the impacts of intracellular viral replication and the heterogeneity of host responses among cell types are unknown. Here, we investigated the heterogeneity of lung tissue cells in response to NDV infection in vivo and that of the chicken embryo fibroblast cell line DF-1 in response to NDV infection in vitro using single-cell RNA sequencing. We characterized the NDV target cell types in the chicken lung at the single-cell transcriptome level and classified cells into five known and two unknown cell types. The five known cell types are the targets of NDV in the lungs with virus RNA detected. Different paths of infection in the putative trajectories of NDV infection were distinguished between in vivo and in vitro, or between virulent Herts/33 strain and nonvirulent LaSota strain. Gene expression patterns and the interferon (IFN) response in different putative trajectories were demonstrated. IFN responses were elevated in vivo, especially in myeloid and endothelial cells. We distinguished the virus-infected and non-infected cells, and the Toll-like receptor signaling pathway was the main pathway after virus infection. Cell-cell communication analysis revealed the potential cell surface receptor-ligand of NDV. Our data provide a rich resource for understanding NDV pathogenesis and open the way to interventions specifically targeting infected cells. IMPORTANCE Newcastle disease virus (NDV) is an avian paramyxovirus that causes major economic losses to the poultry industry around the world, with NDV pathogenicity varying due to strain virulence differences. However, the impacts of intracellular viral replication and the heterogeneity of host responses among cell types are unknown. Here, we investigated the heterogeneity of lung tissue cells in response to NDV infection in vivo and that of the chicken embryo fibroblast cell line DF-1 in response to NDV infection in vitro using single-cell RNA sequencing. Our results open the way to interventions specifically targeting infected cells, suggest principles of virus-host interactions applicable to NDV and other similar pathogens, and highlight the potential for simultaneous single-cell measurements of both host and viral transcriptomes for delineating a comprehensive map of infection in vitro and in vivo. Therefore, this study can be a useful resource for the further investigation and understanding of NDV.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Embrião de Galinha , Animais , Vírus da Doença de Newcastle , Galinhas , Transcriptoma , Doença de Newcastle/patologia , Células Endoteliais
8.
J Virol ; 97(3): e0001623, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36794935

RESUMO

Viruses require host cell metabolic reprogramming to satisfy their replication demands; however, the mechanism by which the Newcastle disease virus (NDV) remodels nucleotide metabolism to support self-replication remains unknown. In this study, we demonstrate that NDV relies on the oxidative pentose phosphate pathway (oxPPP) and the folate-mediated one-carbon metabolic pathway to support replication. In concert with [1,2-13C2] glucose metabolic flow, NDV used oxPPP to promote pentose phosphate synthesis and to increase antioxidant NADPH production. Metabolic flux experiments using [2,3,3-2H] serine revealed that NDV increased one-carbon (1C) unit synthesis flux through the mitochondrial 1C pathway. Interestingly, methylenetetrahydrofolate dehydrogenase (MTHFD2) was upregulated as a compensatory mechanism for insufficient serine availability. Unexpectedly, direct knockdown of enzymes in the one-carbon metabolic pathway, except for cytosolic MTHFD1, significantly inhibited NDV replication. Specific complementation rescue experiments on small interfering RNA (siRNA)-mediated knockdown further revealed that only a knockdown of MTHFD2 strongly restrained NDV replication and was rescued by formate and extracellular nucleotides. These findings indicated that NDV replication relies on MTHFD2 to maintain nucleotide availability. Notably, nuclear MTHFD2 expression was increased during NDV infection and could represent a pathway by which NDV steals nucleotides from the nucleus. Collectively, these data reveal that NDV replication is regulated by the c-Myc-mediated 1C metabolic pathway and that the mechanism of nucleotide synthesis for viral replication is regulated by MTHFD2. IMPORTANCE Newcastle disease virus (NDV) is a dominant vector for vaccine and gene therapy that accommodates foreign genes well but can only infect mammalian cells that have undergone cancerous transformation. Understanding the remodeling of nucleotide metabolic pathways in host cells by NDV proliferation provides a new perspective for the precise use of NDV as a vector or in antiviral research. In this study, we demonstrated that NDV replication is strictly dependent on pathways involved in redox homeostasis in the nucleotide synthesis pathway, including the oxPPP and the mitochondrial one-carbon pathway. Further investigation revealed the potential involvement of NDV replication-dependent nucleotide availability in promoting MTHFD2 nuclear localization. Our findings highlight the differential dependence of NDV on enzymes for one-carbon metabolism, and the unique mechanism of action of MTHFD2 in viral replication, thereby providing a novel target for antiviral or oncolytic virus therapy.


Assuntos
Metilenotetra-Hidrofolato Desidrogenase (NADP) , Doença de Newcastle , Vírus da Doença de Newcastle , Replicação Viral , Animais , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Doença de Newcastle/enzimologia , Doença de Newcastle/fisiopatologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Nucleotídeos/metabolismo , Serina/metabolismo , Replicação Viral/genética , Linhagem Celular , Células A549 , Humanos , Mesocricetus , Técnicas de Silenciamento de Genes , Transporte Proteico/genética , Mitocôndrias/enzimologia , Regulação para Cima/fisiologia
9.
Virus Res ; 326: 199065, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754292

RESUMO

The receptor tyrosine kinases TYRO3, AXL, and MERTK (TAM) are transmembrane proteins associated with the regulation of the innate immune response. In this study, the role of the chicken-derived MERTK protein (chMertk) in the regulation of the type I interferon (IFN) signaling pathway and its antiviral effect were investigated in vitro. Newcastle disease (ND) caused by the Newcastle disease virus (NDV) is able to widely spread in chickens and give rise to massive losses in the poultry industry around the world. We found that the overexpression of the exogenous chMertk upregulated the STAT1 phosphorylation and the expression of IFN-stimulated gene IFITM3 and significantly reduced the NDV titer (p < 0.05). A mutation assay showed that three tyrosine residues (Y739, Y743, and Y744) in chMertk promoted STAT1 phosphorylation and inhibited NDV replication. However, the chicken-derived E3 ubiquitin ligase CBL significantly negatively regulated chMertk expression, thus attenuating STAT1 phosphorylation. chMertk function was restored by the ubiquitin-proteasome inhibitor MG132, demonstrating that chMertk was controlled by Casitas B-lineage proto-oncogene (CBL) ubiquitination and degradation. Together, these results suggested that chMertk participated in regulating the immune responses to NDV infection, and that CBL significantly downregulated the expression of chMertk through its ubiquitination and degradation, to maintain cellular homeostasis. Overall, our study provided new insights into the role of chMertk in regulating the innate immune response and its anti-NDV activity.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/genética , Galinhas , c-Mer Tirosina Quinase/genética , Fosforilação , Antivirais , Tirosina , Replicação Viral
10.
Front Psychol ; 14: 1260843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162975

RESUMO

Introduction: This mixed-methods study evaluates the impact of AI-assisted language learning on Chinese English as a Foreign Language (EFL) students' writing skills and writing motivation. As artificial intelligence (AI) becomes more prevalent in educational settings, understanding its effects on language learning outcomes is crucial. Methods: The study employs a comprehensive approach, combining quantitative and qualitative methods. The quantitative phase utilizes a pre-test and post-test design to assess writing skills. Fifty EFL students, matched for proficiency, are randomly assigned to experimental (AI-assisted instruction via ChatGPT) or control (traditional instruction) groups. Writing samples are evaluated using established scoring rubrics. Concurrently, semi-structured interviews are conducted with a subset of participants to explore writing motivation and experiences with AI-assisted learning. Results: Quantitative analysis reveals significant improvements in both writing skills and motivation among students who received AI-assisted instruction compared to the control group. The experimental group demonstrates enhanced proficiency in various aspects of writing, including organization, coherence, grammar, and vocabulary. Qualitative findings showcase diverse perspectives, ranging from recognition of AI's innovative instructional role and its positive influence on writing skills and motivation to concerns about contextual accuracy and over-reliance. Participants also reflect on the long-term impact and sustainability of AI-assisted instruction, emphasizing the need for ongoing development and adaptation of AI tools. Discussion: The nuanced findings offer a comprehensive understanding of AI's transformative potential in education. These insights have practical implications for practitioners and researchers, emphasizing the benefits, challenges, and the evolving nature of AI's role in language instruction.

11.
Front Microbiol ; 14: 1291761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328580

RESUMO

Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.

12.
Vet Microbiol ; 275: 109580, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308941

RESUMO

Cold stress in poultry is a global problem that causes huge economic losses and threatens the health and welfare of poultry. However, knowledge of chicken responses to virus infection under cold stress is limited. The purpose of this research was to investigate the effects of cold stress on gene expression and viral replication in chicken DF-1 cells in hypothermia. In addition, the characterization of circulating steroid hormone profiles in the plasma of chickens under cold stress was analyzed by liquid chromatography-tandem mass spectrometry. Herein, we performed RNA sequencing to obtain DF-1 cell transcriptional profiles under cold stress. A total of 9499 differentially expressed genes (DEGs) were identified in DF-1 cells. Overexpressed DEGs were related to the proteasome, cell cycle, spliceosome, ribosome biogenesis, and mammalian target of rapamycin (mTOR). Down-regulated DEGs were related to ribosomes, oxidative phosphorylation, apoptosis, and the p53 signaling pathway. Gene set enrichment analysis showed that the DEGs mainly affect host ribosome translation and mitochondrial respiratory electron transport. The principal steroid hormone alterations in chickens subjected to cold stress included dihydrotestosterone, testosterone, ß-sitosterol, androstenedione, 7a,27-dihydroxycholesterol,7-ketocholesterol, and desmosterol, which are associated with endocrine resistance, ovarian steroidogenesis, and steroid hormone biosynthesis. In addition, Infectious bronchitis virus (IBV), Newcastle disease virus (NDV), and Influenza A (H9N2) Virus replication in DF-1 cells is significantly inhibited by cold stress. Moreover, the plasma concentrations of corticosterone, an important stress hormone in poultry, were significantly elevated in chickens subjected to cold stress, and we found that IBV and vesicular stomatitis virus (VSV) replication were strongly inhibited in DF-1 cells pretreated with CORT, but NDV and H9N2 replication were unaffected. In conclusion, in response to cold stress, the translation efficiency and mitochondrial respiratory chain are temporarily weakened in DF-1 cells, which affects virus replication. Chickens may regulate aromatase deficiency, androstenedione metabolism, androgen and estrogen metabolism, and 17-beta hydroxysteroid dehydrogenase III deficiency through steroid hormones in response to cold stress. This study provides valuable insights into the molecular regulatory mechanisms of poultry under cold stress and may support further research on the intrinsic link between steroid hormones and virus replication under stress.


Assuntos
Vírus da Bronquite Infecciosa , Vírus da Influenza A Subtipo H9N2 , Doença de Newcastle , Doenças das Aves Domésticas , Animais , Galinhas , Vírus da Influenza A Subtipo H9N2/genética , Corticosterona , RNA-Seq/veterinária , Resposta ao Choque Frio , Antivirais , Cromatografia Líquida/veterinária , Androstenodiona , Espectrometria de Massas em Tandem/veterinária , Vírus da Doença de Newcastle/genética , Vírus da Bronquite Infecciosa/genética , Mamíferos
13.
Front Cell Infect Microbiol ; 12: 945865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909955

RESUMO

Stress in poultry can lead to changes in body metabolism and immunity, which can increase susceptibility to infectious diseases. However, knowledge regarding chicken responses to viral infection under stress is limited. Dexamethasone (Dex) is a synthetic glucocorticoid similar to that secreted by animals under stress conditions, and has been widely used to induce stress in chickens. Herein, we established a stress model in 7-day-old chickens injected with Dex to elucidate the effects of stress on IBV replication in the kidneys. The metabolic changes, immune status and growth of the chickens under stress conditions were comprehensively evaluated. Furthermore, the metabolic profile, weight gain, viral load, serum cholesterol levels, cytokines and peripheral blood lymphocyte ratio were compared in chickens treated with Dex and infected with IBV. An LC-MS/MS-based metabolomics method was used to examine differentially enriched metabolites in the kidneys. A total of 113 metabolites whose abundance was altered after Dex treatment were identified, most of which were lipids and lipid-like molecules. The principal metabolic alterations in chicken kidneys caused by IBV infection included fatty acid, valine, leucine and isoleucine metabolism. Dex treatment before and after IBV infection mainly affected the host's tryptophan, phenylalanine, amino sugar and nucleotide sugar metabolism. In addition, Dex led to up-regulation of serum cholesterol levels and renal viral load in chickens, and to the inhibition of weight gain, peripheral blood lymphocytes and IL-6 production. We also confirmed that the exogenous cholesterol in DF-1 cells promoted the replication of IBV. However, whether the increase in viral load in kidney tissue is associated with the up-regulation of cholesterol levels induced by Dex must be demonstrated in future experiments. In conclusion, chick growth and immune function were significantly inhibited by Dex. Host cholesterol metabolism and the response to IBV infection are regulated by Dex. This study provides valuable insights into the molecular regulatory mechanisms in poultry stress, and should support further research on the intrinsic link between cholesterol metabolism and IBV replication under stress conditions.


Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Galinhas , Cromatografia Líquida , Dexametasona/farmacologia , Vírus da Bronquite Infecciosa/fisiologia , Rim , Espectrometria de Massas em Tandem , Aumento de Peso
14.
Virulence ; 13(1): 1407-1422, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35993169

RESUMO

As obligate intracellular parasites, viruses rely completely on host metabolic machinery and hijack host nutrients for viral replication. Newcastle disease virus (NDV) causes acute, highly contagious avian disease and functions as an oncolytic agent. NDV efficiently replicates in both chicken and tumour cells. However, how NDV reprograms host cellular metabolism for its efficient replication is still ill-defined. We previously identified a significantly upregulated glutamate transporter gene, solute carrier family 1 member 3 (SLC1A3), during NDV infection via transcriptome analysis. To investigate the potential role of SLC1A3 during NDV infection, we first confirmed the marked upregulation of SLC1A3 in NDV-infected DF-1 or A549 cells through p53 and NF-κB pathways. Knockdown of SLC1A3 inhibited NDV infection. Western blot analysis further confirmed that glutamine, but not glutamate, asparagine, or aspartate, was required for NDV replication. Metabolic flux data showed that NDV promotes the decomposition of glutamine into the tricarboxylic acid cycle. Importantly, the level of glutamate and glutaminolysis were reduced by SLC1A3 knockdown, indicating that SLC1A3 propelled glutaminolysis for glutamate utilization and NDV replication in host cells. Taken together, our data identify that SLC1A3 serves as an important regulator for glutamine metabolism and is hijacked by NDV for its efficient replication during NDV infection. These results improve our understanding of the interaction between NDV and host cellular metabolism and lay the foundation for further investigation of efficient vaccines.


Assuntos
Glutamina , Vírus da Doença de Newcastle , Células A549 , Animais , Galinhas , Glutamina/metabolismo , Humanos , Vírus da Doença de Newcastle/genética , Replicação Viral
15.
Front Microbiol ; 13: 883642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783402

RESUMO

Infectious bronchitis virus (IBV) has been prevalent in chicken farms for many years, and its control relies on extensive vaccine administration. The continuous emergence of new variants and the low cross-protection efficiency prompt the development of new vaccines. In this study, we develop a reverse genetics technique based on the classical vaccine strain H120 genome, via in vitro ligation method. Using the H120 genome as the backbone, we constructed the recombinant virus rH120-QX(S) by replacing the H120 S gene with the QX S gene, a prevalent strain in China. Biological characteristics of the rH120-QX(S) virus, such as 50% egg lethal dose (ELD50), 50% egg infectious dose (EID50), dwarf embryo, growth curve, and genetic stability, are measured, which are comparable to the parental virus H120. There are no clinical symptoms and tissue lesions in the trachea and kidney in the rH120-QX(S)-infected specific-pathogen-free (SPF) chickens, demonstrating that this recombinant virus does not confer pathogenicity. Furthermore, protection studies show that there is 100% homologous protection of rH120-QX(S) to the virulent QX strain, as shown by the absence of clinical signs and no lethality. Taken together, our results demonstrate that swapping the S gene onto the H120 genetic backbone is a precise and effective way to produce genetically defined IBV vaccine candidates.

16.
Front Microbiol ; 13: 874331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633731

RESUMO

Virus infection can lead to the production of interferon, which activates the JAK/STAT pathway and induces the expression of multiple downstream interferon-stimulated genes (ISGs) to achieve their antiviral function. Cytidine/uridine monophosphate kinase 2 (CMPK2) gene has been identified as an ISG in human and fish, and is also known as a rate-limiting enzyme in mitochondria to maintain intracellular UTP/CTP levels, which is necessary for de novo mitochondrial DNA synthesis. By mining previous microarray data, it was found that both Avian Influenza Virus (AIV) and Newcastle Disease Virus (NDV) infection can lead to the significant upregulation of chicken CMPK2 gene. However, little is known about the function of CMPK2 gene in chickens. In the present study, the open reading frame (ORF) of chicken CMPK2 (chCMPK2) was cloned from DF-1, a chicken embryo fibroblasts cell line, and subjected to further analysis. Sequence analysis showed that chCMPK2 shared high similarity in amino acid with CMPK2 sequences from all the other species, especially reptiles. A thymidylate kinase (TMK) domain was identified in the C-terminus of chCMPK2, which is highly conserved among all species. In vitro, AIV infection induced significant increases in chCMPK2 expression in DF-1, HD11, and the chicken embryonic fibroblasts (CEF), while obvious increase only detected in DF-1 cells and CEF cells after NDV infection. In vivo, the expression levels of chCMPK2 were up-regulated in several tissues from AIV infected chickens, especially the brain, spleen, bursa, kidney, intestine, heart and thymus, and notable increase of chCMPK2 was detected in the bursa, kidney, duodenum, lung, heart, and thymus during NDV infection. Here, using MDA5 and IFN-ß knockdown cells, we demonstrated that as a novel ISG, chCMPK2 could be regulated by the MDA5/IFN-ß pathway. The high expression level of exogenous chCMPK2 displayed inhibitory effects on AIV and NDV as well as reduced viral RNA in infected cells. We further demonstrated that Asp135, a key site on the TMK catalytic domain, was identified as critical for the antiviral activities of chCMPK2. Taken together, these data demonstrated that chCMPK2 is involved in the chicken immune system and may play important roles in host anti-viral responses.

17.
Front Immunol ; 13: 791267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529872

RESUMO

Host cholesterol metabolism remodeling is significantly associated with the spread of human pathogenic coronaviruses, suggesting virus-host relationships could be affected by cholesterol-modifying drugs. Cholesterol has an important role in coronavirus entry, membrane fusion, and pathological syncytia formation, therefore cholesterol metabolic mechanisms may be promising drug targets for coronavirus infections. Moreover, cholesterol and its metabolizing enzymes or corresponding natural products exert antiviral effects which are closely associated with individual viral steps during coronavirus replication. Furthermore, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 infections are associated with clinically significant low cholesterol levels, suggesting cholesterol could function as a potential marker for monitoring viral infection status. Therefore, weaponizing cholesterol dysregulation against viral infection could be an effective antiviral strategy. In this review, we comprehensively review the literature to clarify how coronaviruses exploit host cholesterol metabolism to accommodate viral replication requirements and interfere with host immune responses. We also focus on targeting cholesterol homeostasis to interfere with critical steps during coronavirus infection.


Assuntos
COVID-19 , Antivirais/uso terapêutico , Colesterol/metabolismo , Humanos , Replicação Viral
18.
J Virol ; 96(2): e0162921, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34705566

RESUMO

The Newcastle disease virus (NDV) matrix (M) protein is the pivotal element for viral assembly, budding, and proliferation. It traffics through the cellular nucleus but performs its primary function in the cytoplasm. To investigate the biological importance of M protein nuclear-cytoplasmic trafficking and the mechanism involved, the regulatory motif nuclear export signal (NES) and nuclear localization signal (NLS) were analyzed. Here, two types of combined NLSs and NESs were identified within the NDV-M protein. The Herts/33-type M protein was found to mediate efficient nuclear export and stable virus-like particle (VLP) release, while the LaSota-type M protein was retained mostly in the nuclei and showed retarded VLP production. Two critical residues, namely, 247 and 263, within the motif were identified and associated with nuclear export efficiency. We identified, for the first time, residue 247 as an important monoubiquitination site, of which its modification regulates the nuclear-cytoplasmic trafficking of NDV-M. Subsequently, mutant LaSota strains were rescued via reverse genetics, which contained either single or double amino acid substitutions that were similar to the M of Herts/33. The rescued LaSota (rLaSota) strains rLaSota-R247K, -S263R, and -double mutation (DM) showed about 2-fold higher hemagglutination (HA) titers and 10-fold higher 50% egg infective dose (EID50) titers than wild-type (wt) rLaSota. Furthermore, the mean death time (MDT) and intracerebral pathogenicity index (ICPI) values of those recombinant viruses were slightly higher than those of wt rLaSota probably due to their higher proliferation rates. Our findings contribute to a better understanding of the molecular mechanism of the replication and pathogenicity of NDV and even those of all other paramyxoviruses. This information is beneficial for the development of vaccines and therapies for paramyxoviruses. IMPORTANCE Newcastle disease virus (NDV) is a pathogen that is lethal to birds and causes heavy losses in the poultry industry worldwide. The World Organization for Animal Health (OIE) ranked Newcastle disease (ND) as the third most significant poultry disease and the eighth most important wildlife disease in the World Livestock Disease Atlas in 2011. The matrix (M) protein of NDV is very important for viral assembly and maturation. It is interesting that M proteins enter the cellular nucleus before performing their primary function in the cytoplasm. We found that NDV-M has a combined nuclear import and export signal. The ubiquitin modification of a lysine residue within this signal is critical for quick, efficient nuclear export and subsequent viral production. Our findings shed new light on viral replication and open up new possibilities for therapeutics against NDV and other paramyxoviruses; furthermore, we demonstrate a novel approach for improving paramyxovirus vaccines.


Assuntos
Núcleo Celular/metabolismo , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/patogenicidade , Ubiquitinação , Proteínas da Matriz Viral/metabolismo , Replicação Viral , Animais , Galinhas , Citoplasma/metabolismo , Lisina , Modelos Moleculares , Mutação , Doença de Newcastle/metabolismo , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/metabolismo , Sinais de Exportação Nuclear , Sinais de Localização Nuclear , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Virulência , Liberação de Vírus
19.
Autophagy ; 18(7): 1503-1521, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34720029

RESUMO

Lacking a self-contained metabolism network, viruses have evolved multiple mechanisms for rewiring the metabolic system of their host to hijack the host's metabolic resources for replication. Newcastle disease virus (NDV) is a paramyxovirus, as an oncolytic virus currently being developed for cancer treatment. However, how NDV alters cellular metabolism is still far from fully understood. In this study, we show that NDV infection reprograms cell metabolism by increasing glucose utilization in the glycolytic pathway. Mechanistically, NDV induces mitochondrial damage, elevated mitochondrial reactive oxygen species (mROS) and ETC dysfunction. Infection of cells depletes nucleotide triphosphate levels, resulting in elevated AMP:ATP ratios, AMP-activated protein kinase (AMPK) phosphorylation, and MTOR crosstalk mediated autophagy. In a time-dependent manner, NDV shifts the balance of mitochondrial dynamics from fusion to fission. Subsequently, PINK1-PRKN-dependent mitophagy was activated, forming a ubiquitin chain with MFN2 (mitofusin 2), and molecular receptor SQSTM1/p62 recognized damaged mitochondria. We also found that NDV infection induces NAD+-dependent deacetylase SIRT3 loss via mitophagy to engender HIF1A stabilization, leading to the switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis. Overall, these studies support a model that NDV modulates host cell metabolism through PINK1-PRKN-dependent mitophagy for degrading SIRT3.Abbreviations: AMPK: AMP-activated protein kinase; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ECAR: extracellular acidification rate; hpi: hours post infection LC-MS: liquid chromatography-mass spectrometry; mito-QC: mCherry-GFP-FIS1[mt101-152]; MFN2: mitofusin 2; MMP: mitochondrial membrane potential; mROS: mitochondrial reactive oxygen species; MOI: multiplicity of infection; 2-NBDG: 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2-deoxyglucose; NDV: newcastle disease virus; OCR: oxygen consumption rate; siRNA: small interfering RNA; SIRT3: sirtuin 3; TCA: tricarboxylic acid; TCID50: tissue culture infective doses.


Assuntos
Mitofagia , Sirtuína 3 , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia , Metabolismo Energético , Mitofagia/genética , Vírus da Doença de Newcastle/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
20.
Viruses ; 13(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34960678

RESUMO

The chicken is a model animal for the study of evolution, immunity and development. In addition to their use as a model organism, chickens also represent an important agricultural product. Pathogen invasion has already been shown to modulate the expression of hundreds of genes, but the role of alternative splicing in avian virus infection remains unclear. We used RNA-seq data to analyze virus-induced changes in the alternative splicing of Gallus gallus, and found that a large number of alternative splicing events were induced by virus infection both in vivo and in vitro. Virus-responsive alternative splicing events preferentially occurred in genes involved in metabolism and transport. Many of the alternatively spliced transcripts were also expressed from genes with a function relating to splicing or immune response, suggesting a potential impact of virus infection on pre-mRNA splicing and immune gene regulation. Moreover, exon skipping was the most frequent AS event in chickens during virus infection. This is the first report describing a genome-wide analysis of alternative splicing in chicken and contributes to the genomic resources available for studying host-virus interaction in this species. Our analysis fills an important knowledge gap in understanding the extent of genome-wide alternative splicing dynamics occurring during avian virus infection and provides the impetus for the further exploration of AS in chicken defense signaling and homeostasis.


Assuntos
Processamento Alternativo , Galinhas/genética , Galinhas/virologia , Interações entre Hospedeiro e Microrganismos , Doenças das Aves Domésticas/genética , Viroses/veterinária , Regiões 3' não Traduzidas , Animais , Células Cultivadas , Doença de Newcastle/genética , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/fisiologia , Poliadenilação , Doenças das Aves Domésticas/virologia , Fatores de Processamento de RNA/genética , RNA-Seq , Spliceossomos/genética , Transcriptoma , Viroses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA