RESUMO
The mature HIV-1 envelope (Env) glycoprotein is composed of gp120, the exterior subunit, and gp41, the transmembrane subunit assembled as trimer by noncovalent interaction. There is a great body of literature to prove that gp120 binds to CD4 first, then to the coreceptor. Binding experiments and functional assays have demonstrated that CD4 binding induces conformational changes in gp120 that enable or enhance its interaction with a coreceptor. Previous studies provided different glycomic maps for the HIV-1 gp120. Here, we build on previous work to report that the use of LC-MS/MS, in conjunction with hydrophilic interaction liquid chromatography (HILIC) enrichment to glycosylation sites, associated with the assorted neutralizing or binding events of glycosylation targeted antibodies from different clades or strains. In this study, the microheterogeneity of the glycosylation from 4 different clades of gp120s is deeply investigated. Aberrant glycosylation patterns were detected on gp120 that originated from different clades, viral sequences, and host cells. The results of this study may help provide a better understanding of the mechanism of how the glycans participate in the antibody neutralizing process that targets glycosylation sites.
Assuntos
HIV-1 , Anticorpos Neutralizantes/metabolismo , Cromatografia Líquida , Glicosilação , Proteína gp120 do Envelope de HIV/genética , Humanos , Espectrometria de Massas em TandemRESUMO
[This corrects the article PMC7289043.].
RESUMO
In the absence of a dominant driving mutation other than uniformly present TP53 mutations, deeper understanding of the biology driving ovarian high-grade serous cancer (HGSC) requires analysis at a functional level, including post-translational modifications. Comprehensive proteogenomic and phosphoproteomic characterization of 83 prospectively collected ovarian HGSC and appropriate normal precursor tissue samples (fallopian tube) under strict control of ischemia time reveals pathways that significantly differentiate between HGSC and relevant normal tissues in the context of homologous repair deficiency (HRD) status. In addition to confirming key features of HGSC from previous studies, including a potential survival-associated signature and histone acetylation as a marker of HRD, deep phosphoproteomics provides insights regarding the potential role of proliferation-induced replication stress in promoting the characteristic chromosomal instability of HGSC and suggests potential therapeutic targets for use in precision medicine trials.
Assuntos
Instabilidade Cromossômica/fisiologia , Cistadenocarcinoma Seroso , Replicação do DNA/genética , Neoplasias Ovarianas , Fosfotransferases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Pontos de Checagem do Ciclo Celular/genética , Estudos de Coortes , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/mortalidade , Dano ao DNA , Neoplasias das Tubas Uterinas/genética , Neoplasias das Tubas Uterinas/metabolismo , Neoplasias das Tubas Uterinas/mortalidade , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Mitose/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Fosfotransferases/metabolismo , Proteogenômica , Transcriptoma , Proteína Supressora de Tumor p53/genéticaRESUMO
Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low nanograms per milliliter to sub-naograms per milliliter level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundance proteins (e.g., ≤ 100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging, especially for these samples without available antibodies for enrichment. To address this need, we have developed an antibody-independent deep-dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide separation and enrichment combined with precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by â¼5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue provides precise quantification of endogenous proteins at the â¼10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibodies are not available.
Assuntos
Proteínas Sanguíneas/química , Imunoensaio/métodos , Espectrometria de Massas/métodos , Proteômica/métodos , Anticorpos , Cromatografia de Fase Reversa , Humanos , Plasma/química , Antígeno Prostático Específico/sangue , Sensibilidade e EspecificidadeRESUMO
Mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are emerging as a promising tool for verification of candidate proteins in biological and biomedical applications. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large sets of targeted MS-based assays, and a depository to share assays publicly. Herein, we report the development of 98 SRM assays that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document; 37 of these passed all five experimental tests. The assays cover 70 proteins previously identified at the protein level in ovarian tumors. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and endogenous detection are described in detail. Data are available via PeptideAtlas, Panorama and the CPTAC Assay Portal.
Assuntos
Neoplasias Ovarianas , Proteogenômica , Proteômica , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismoRESUMO
Proteins and glycoproteins play important biological roles in central nervous systems (CNS). Qualitative and quantitative evaluation of proteins and glycoproteins expression in CNS is critical to reveal the inherent biomolecular mechanism of CNS diseases. This chapter describes proteomic and glycoproteomic approaches based on liquid chromatography/tandem mass spectrometry (LC-MS or LC-MS/MS) for the qualitative and quantitative assessment of proteins and glycoproteins expressed in CNS. Proteins and glycoproteins, extracted by a mass spectrometry friendly surfactant from CNS samples, were subjected to enzymatic (tryptic) digestion and three down-stream analyses: (1) a nano LC system coupled with a high-resolution MS instrument to achieve qualitative proteomic profile, (2) a nano LC system combined with a triple quadrupole MS to quantify identified proteins, and (3) glycoprotein enrichment prior to LC-MS/MS analysis. Enrichment techniques can be applied to improve coverage of low abundant glycopeptides/glycoproteins. An example described in this chapter is hydrophilic interaction liquid chromatographic (HILIC) enrichment to capture glycopeptides, allowing efficient removal of peptides. The combination of three LC-MS/MS-based approaches is capable of the investigation of large-scale proteins and glycoproteins from CNS with an in-depth coverage, thus offering a full view of proteins and glycoproteins changes in CNS.
Assuntos
Sistema Nervoso Central/metabolismo , Cromatografia Líquida , Glicoproteínas/metabolismo , Proteoma , Proteômica , Espectrometria de Massas em Tandem , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Glicoproteínas/química , Proteólise , Proteômica/métodos , Estatística como AssuntoRESUMO
Aberrant glycosylation has been linked to many different cancer types. The blood-brain barrier (BBB) is a region of the brain that regulates the entrance of ions, diseases, toxins, and so on. However, in breast cancer metastasis, the BBB fails to prevent the crossing of the cancer cells into the brain. Here we present a study of identifying and quantifying the glycosylation of six breast and brain cancer cell lines using hydrophilic interaction liquid chromatography (HILIC) and electrostatic repulsion liquid chromatography (ERLIC) enrichments and LC-MS/MS analysis. Qualitative and quantitative analyses of N-linked glycosylation were performed by both enrichment techniques for individual and complementary comparison. Potential cancer glycopeptide biomarkers were identified and confirmed by chemometric and statistical evaluations. A total of 497 glycopeptides were characterized, of which 401 were common glycopeptides (80.6% overlap) identified from both enrichment techniques. HILIC enrichment yielded 320 statistically significant glycopeptides in 231BR relative to the other cell lines out of 494 unique glycopeptides, and sequential HILIC-ERLIC enrichment yielded 214 statistically significant glycopeptides in 231BR compared with the other cell lines out of 404 unique glycopeptides. The results provide the first comprehensive glycopeptide listing for these six cell lines.
Assuntos
Neoplasias Encefálicas/química , Neoplasias da Mama/química , Glicopeptídeos/análise , Proteínas de Neoplasias/análise , Neoplasias Encefálicas/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Interpretação Estatística de Dados , Feminino , Glicosilação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Espectrometria de Massas em Tandem/métodosRESUMO
Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074-1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.
Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Animais , Biomarcadores/análise , Biomarcadores/sangue , Humanos , Transdução de Sinais/fisiologiaRESUMO
Mass spectrometry has become a routine experimental tool for proteomic biomarker analysis of human blood samples, partly due to the large availability of informatics tools. As one of the most common protein post-translational modifications (PTMs) in mammals, protein glycosylation has been observed to alter in multiple human diseases and thus may potentially be candidate markers of disease progression. While mass spectrometry instrumentation has seen advancements in capabilities, discovering glycosylation-related markers using existing software is currently not straightforward. Complete characterization of protein glycosylation requires the identification of intact glycopeptides in samples, including identification of the modification site as well as the structure of the attached glycans. In this paper, we present GlycoSeq, an open-source software tool that implements a heuristic iterated glycan sequencing algorithm coupled with prior knowledge for automated elucidation of the glycan structure within a glycopeptide from its collision-induced dissociation tandem mass spectrum. GlycoSeq employs rules of glycosidic linkage as defined by glycan synthetic pathways to eliminate improbable glycan structures and build reasonable glycan trees. We tested the tool on two sets of tandem mass spectra of N-linked glycopeptides cell lines acquired from breast cancer patients. After employing enzymatic specificity within the N-linked glycan synthetic pathway, the sequencing results of GlycoSeq were highly consistent with the manually curated glycan structures. Hence, GlycoSeq is ready to be used for the characterization of glycan structures in glycopeptides from MS/MS analysis. GlycoSeq is released as open source software at https://github.com/chpaul/GlycoSeq/ .
Assuntos
Automação , Glicopeptídeos/química , Polissacarídeos/análise , Software , Algoritmos , Configuração de Carboidratos , Linhagem Celular Tumoral , Humanos , Espectrometria de Massas em TandemRESUMO
Glycosylation plays important roles in maintaining protein stability and controlling biological processes. In recent years, the correlation between aberrant glycoproteins and many diseases has been reported. Hence, qualitative and quantitative analyses of glycoproteins are necessary to understand physiological processes. LC-MS/MS analysis of glycopeptides is faced with the low glycopeptide signal intensities and low peptide sequence identification. In our study, in-source fragmentation (ISF) was used in conjunction with LC-MS/MS to facilitate the parallel acquisition of peptide backbone sequence and glycan composition information. In ISF method, the identification of glycosylation sites depended on the detection of Y1 ion (ion of peptide backbone with an N-acetylglucosamine attached). To attain dominant Y1 ions, a range of source fragmentation voltages was studied using fetuin. A 45 V ISF voltage was found to be the most efficient voltage for the analysis of glycoproteins. ISF was employed to study the glycosylation sites of three model glycoproteins, including fetuin, α1-acid glycoprotein and porcine thyroglobulin. The approach was then used to analyze blood serum samples. Y1 ions of glycopeptides in tryptic digests of samples were detected. Y1 ions of glycopeptides with different sialic acid groups are observed at different retention times, representing the various numbers of sialic acid moieties associated with the same peptide backbone sequence. With ISF facilitating the peptide backbone sequencing of glycopeptides, identified peptide sequence coverage was increased. For example, identified fetuin sequence percentage was improved from 39 to 80% in MASCOT database searching compared to conventional CID method. The formation of Y1 ions and oxonium ions in ISF facilitates glycopeptide sequencing and glycan composition identification.
Assuntos
Sequência de Aminoácidos , Glicopeptídeos/química , Glicosilação , Fragmentos de Peptídeos/química , Animais , Sítios de Ligação , Proteínas Sanguíneas/análise , Fetuínas/análise , Humanos , Orosomucoide/análise , Suínos , Espectrometria de Massas em Tandem , Tireoglobulina/análiseRESUMO
Many biological processes involve the mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Thus, the challenge of deciphering mTORC1-mediated functions during normal and pathological states in the central nervous system is challenging. Because mTORC1 is at the core of translation, we have investigated mTORC1 function in global and regional protein expression. Activation of mTORC1 has been generally regarded to promote translation. Few but recent works have shown that suppression of mTORC1 can also promote local protein synthesis. Moreover, excessive mTORC1 activation during diseased states represses basal and activity-induced protein synthesis. To determine the role of mTORC1 activation in protein expression, we have used an unbiased, large-scale proteomic approach. We provide evidence that a brief repression of mTORC1 activity in vivo by rapamycin has little effect globally, yet leads to a significant remodeling of synaptic proteins, in particular those proteins that reside in the postsynaptic density. We have also found that curtailing the activity of mTORC1 bidirectionally alters the expression of proteins associated with epilepsy, Alzheimer's disease, and autism spectrum disorder-neurological disorders that exhibit elevated mTORC1 activity. Through a protein-protein interaction network analysis, we have identified common proteins shared among these mTORC1-related diseases. One such protein is Parkinson protein 7, which has been implicated in Parkinson's disease, yet not associated with epilepsy, Alzheimers disease, or autism spectrum disorder. To verify our finding, we provide evidence that the protein expression of Parkinson protein 7, including new protein synthesis, is sensitive to mTORC1 inhibition. Using a mouse model of tuberous sclerosis complex, a disease that displays both epilepsy and autism spectrum disorder phenotypes and has overactive mTORC1 signaling, we show that Parkinson protein 7 protein is elevated in the dendrites and colocalizes with the postsynaptic marker postsynaptic density-95. Our work offers a comprehensive view of mTORC1 and its role in regulating regional protein expression in normal and diseased states.
Assuntos
Transtorno do Espectro Autista/genética , Epilepsia/genética , Complexos Multiproteicos/genética , Proteínas Oncogênicas/biossíntese , Doença de Parkinson/genética , Peroxirredoxinas/biossíntese , Biossíntese de Proteínas/genética , Serina-Treonina Quinases TOR/genética , Esclerose Tuberosa/genética , Animais , Transtorno do Espectro Autista/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Dendritos/genética , Dendritos/patologia , Modelos Animais de Doenças , Epilepsia/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Proteínas Oncogênicas/genética , Doença de Parkinson/patologia , Peroxirredoxinas/genética , Proteína Desglicase DJ-1 , Proteômica/métodos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Esclerose Tuberosa/patologiaRESUMO
Glycosylation is one of the most common post-translational modifications in proteins, existing in ~50% of mammalian proteins. Several research groups have demonstrated that mass spectrometry is an efficient technique for glycopeptide identification; however, this problem is still challenging because of the enormous diversity of glycan structures and the microheterogeneity of glycans. In addition, a glycopeptide may contain multiple glycosylation sites, making the problem complex. Current software tools often fail to identify glycopeptides with multiple glycosylation sites, and hence we present GlycoMID, a graph-based spectral alignment algorithm that can identify glycopeptides with multiple hydroxylysine O-glycosylation sites by tandem mass spectra. GlycoMID was tested on mass spectrometry data sets of the bovine collagen α-(II) chain protein, and experimental results showed that it identified more glycopeptide-spectrum matches than other existing tools, including many glycopeptides with two glycosylation sites.
Assuntos
Algoritmos , Glicopeptídeos/análise , Glicopeptídeos/metabolismo , Hidroxilisina/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Cartilagem/química , Bovinos , Colágeno Tipo II/metabolismo , GlicosilaçãoRESUMO
Protein glycosylation is an important and common post-translational modification. More than 50% of human proteins are believed to be glycosylated to modulate the functionality of proteins. Aberrant glycosylation has been correlated to several diseases, such as inflammatory skin diseases, diabetes mellitus, cardiovascular disorders, rheumatoid arthritis, Alzheimer's and prion diseases, and cancer. Many approved cancer biomarkers are glycoproteins which are not highly abundant proteins. Therefore, effective qualitative and quantitative assessment of glycoproteins entails enrichment methods. This chapter summarizes glycoprotein enrichment methods, including lectin affinity, immunoaffinity, hydrazide chemistry, hydrophilic interaction liquid chromatography, and click chemistry. The use of these enrichment approaches in assessing the qualitative and quantitative changes of glycoproteins in different types of cancers are presented and discussed. This chapter highlights the importance of glycoprotein enrichment techniques for the identification and characterization of new reliable cancer biomarkers.
Assuntos
Biomarcadores Tumorais/metabolismo , Glicoproteínas/metabolismo , Espectrometria de Massas/métodos , Neoplasias/metabolismo , HumanosRESUMO
Prostate specific antigen (PSA) is currently used as a diagnostic biomarker for prostate cancer. It is a glycoprotein possessing a single glycosylation site at N69. During our previous study of PSA N69 glycosylation, additional glycopeptides were observed in the PSA sample that were not previously reported and did not match glycopeptides of impure glycoproteins existing in the sample. This extra glycosylation site of PSA is associated with a mutation in KLK3 genes. Among single nucleotide polymorphisms (SNPs) of KLKs families, the rs61752561 in KLK3 genes is an unusual missense mutation resulting in the conversion of D102 to N in PSA amino acid sequence. Accordingly, a new N-linked glycosylation site is created with an N102MS motif. Here we report the first qualitative and quantitative glycoproteomic study of PSA N102 glycosylation site by LC-MS/MS. We successfully applied tandem MS to verify the amino acid sequence possessing N102 glycosylation site and associated glycoforms of PSA samples acquired from different suppliers. Among the three PSA samples, HexNAc2Hex5 was the predominant glycoform at N102, while HexNAc4Hex5Fuc1NeuAc1 or HexNAc4Hex5Fuc1NeuAc2 was the primary glycoforms at N69. D102 is the first amino acid of "kallikrein loop", which is close to a zinc-binding site and catalytic triad. The different glycosylation of N102 relative to N69 might be influenced by the close vicinity of N102 to these functional sites and steric hindrance.
Assuntos
Mutação de Sentido Incorreto , Antígeno Prostático Específico/química , Sequência de Aminoácidos , Cromatografia Líquida , Glicosilação , Humanos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Antígeno Prostático Específico/genética , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em TandemRESUMO
Associating changes in protein levels with the onset of cancer has been widely investigated to identify clinically relevant diagnostic biomarkers. In the present study, we analyzed sera from 205 patients recruited in the United States and Egypt for biomarker discovery using label-free proteomic analysis by LC-MS/MS. We performed untargeted proteomic analysis of sera to identify candidate proteins with statistically significant differences between hepatocellular carcinoma (HCC) and patients with liver cirrhosis. We further evaluated the significance of 101 proteins in sera from the same 205 patients through targeted quantitation by MRM on a triple quadrupole mass spectrometer. This led to the identification of 21 candidate protein biomarkers that were significantly altered in both the United States and Egyptian cohorts. Among the 21 candidates, ten were previously reported as HCC-associated proteins (eight exhibiting consistent trends with our observation), whereas 11 are new candidates discovered by this study. Pathway analysis based on the significant proteins reveals upregulation of the complement and coagulation cascades pathway and downregulation of the antigen processing and presentation pathway in HCC cases versus patients with liver cirrhosis. The results of this study demonstrate the power of combining untargeted and targeted quantitation methods for a comprehensive serum proteomic analysis, to evaluate changes in protein levels and discover novel diagnostic biomarkers. All MS data have been deposited in the ProteomeXchange with identifier PXD001171 (http://proteomecentral.proteomexchange.org/dataset/PXD001171).
Assuntos
Carcinoma Hepatocelular/metabolismo , Cromatografia Líquida/métodos , Neoplasias Hepáticas/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Prostate specific antigen (PSA) is currently used as a biomarker to diagnose prostate cancer. PSA testing has been widely used to detect and screen prostate cancer. However, in the diagnostic gray zone, the PSA test does not clearly distinguish between benign prostate hypertrophy and prostate cancer due to their overlap. To develop more specific and sensitive candidate biomarkers for prostate cancer, an in-depth understanding of the biochemical characteristics of PSA (such as glycosylation) is needed. PSA has a single glycosylation site at Asn69, with glycans constituting approximately 8% of the protein by weight. Here, we report the comprehensive identification and quantitation of N-glycans from two PSA isoforms using LC-MS/MS. There were 56 N-glycans associated with PSA, whereas 57 N-glycans were observed in the case of the PSA-high isoelectric point (pI) isoform (PSAH). Three sulfated/phosphorylated glycopeptides were detected, the identification of which was supported by tandem MS data. One of these sulfated/phosphorylated N-glycans, HexNAc5Hex4dHex1s/p1 was identified in both PSA and PSAH at relative intensities of 0.52 and 0.28%, respectively. Quantitatively, the variations were monitored between these two isoforms. Because we were one of the laboratories participating in the 2012 ABRF Glycoprotein Research Group (gPRG) study, those results were compared to that presented in this study. Our qualitative and quantitative results summarized here were comparable to those that were summarized in the interlaboratory study.
Assuntos
Calicreínas/metabolismo , Antígeno Prostático Específico/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Configuração de Carboidratos , Sequência de Carboidratos , Cromatografia em Gel , Glicopeptídeos/química , Glicosilação , Humanos , Ponto Isoelétrico , Dados de Sequência Molecular , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em TandemRESUMO
Changes in glycosylation have been shown to have a profound correlation with development/malignancy in many cancer types. Currently, two major enrichment techniques have been widely applied in glycoproteomics, namely, lectin affinity chromatography (LAC)-based and hydrazide chemistry (HC)-based enrichments. Here we report the LC-MS/MS quantitative analyses of human blood serum glycoproteins and glycopeptides associated with esophageal diseases by LAC- and HC-based enrichment. The separate and complementary qualitative and quantitative data analyses of protein glycosylation were performed using both enrichment techniques. Chemometric and statistical evaluations, PCA plots, or ANOVA test, respectively, were employed to determine and confirm candidate cancer-associated glycoprotein/glycopeptide biomarkers. Out of 139, 59 common glycoproteins (42% overlap) were observed in both enrichment techniques. This overlap is very similar to previously published studies. The quantitation and evaluation of significantly changed glycoproteins/glycopeptides are complementary between LAC and HC enrichments. LC-ESI-MS/MS analyses indicated that 7 glycoproteins enriched by LAC and 11 glycoproteins enriched by HC showed significantly different abundances between disease-free and disease cohorts. Multiple reaction monitoring quantitation resulted in 13 glycopeptides by LAC enrichment and 10 glycosylation sites by HC enrichment to be statistically different among disease cohorts.
Assuntos
Neoplasias Esofágicas/sangue , Glicoproteínas/sangue , Hidrazinas/metabolismo , Lectinas/metabolismo , Proteômica/métodos , Análise de Variância , Cromatografia de Afinidade/métodos , Cromatografia Líquida/métodos , Estudos de Coortes , Neoplasias Esofágicas/genética , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Análise de Componente Principal , Espectrometria de Massas em Tandem/métodosRESUMO
Glycan moieties of glycoproteins modulate many biological processes in mammals, such as immune response, inflammation, and cell signaling. Numerous studies show that many human diseases are correlated with quantitative alteration of protein glycosylation. In some cases, these changes can occur for certain types of glycans over specific sites in a glycoprotein rather than on the global abundance of the glycoprotein. Conventional analytical techniques that analyze the abundance of glycans cleaved from glycoproteins cannot reveal these subtle effects. Here we present a novel statistical method to quantify the site-specific glycosylation of glycoproteins in complex samples using label-free mass spectrometric techniques. Abundance variations between sites of a glycoprotein as well as different glycoforms, that is, glycopeptides with different glycans attached to the same site, can be detected using these techniques. We applied our method to an esophageal cancer study based on blood serum samples from cancer patients in an attempt to detect potential biomarkers of site-specific N-linked glycosylation. A few glycoproteins, including vitronectin, showed significantly different site-specific glycosylations within cancer/control samples, indicating that our method is ready to be used for the discovery of glycosylated biomarkers.
Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Esofágicas/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glicopeptídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Análise de Variância , Cromatografia Líquida , Regulação Neoplásica da Expressão Gênica/genética , Glicosilação , Humanos , Modelos Estatísticos , Polissacarídeos/químicaRESUMO
Glycosylation is an important protein modification that involves enzymatic attachment of sugars to amino acid residues. Understanding the structure of these sugars and the effects of glycosylation are vital for developing indicators of disease development and progression. Although computational methods based on mass spectrometric data have proven to be effective in monitoring changes in the glycome, developing such methods for the glycoproteome are challenging, largely due to the inherent complexity in simultaneously studying glycan structures with their corresponding glycosylation sites. This paper introduces a computational framework for identifying intact N-linked glycopeptides, i.e. glycopeptides with N-linked glycans attached to their glycosylation sites, in complex proteome samples. Scoring algorithms are presented for tandem mass spectra of glycopeptides resulting from collision-induced dissociation (CID), higher-energy C-trap dissociation (HCD), and electron transfer dissociation (ETD) fragmentation modes. An empirical false-discovery rate estimation method, based on a target-decoy search approach, is derived for assigning confidence. The power of our method is further enhanced when multiple data sets are pooled together to increase identification confidence. Using this framework, 103 highly confident N-linked glycopeptides from 53 sites across 33 glycoproteins were identified in complex human serum proteome samples using conventional proteomic platforms with standard depletion of the 7-most abundant proteins. These results indicate that our method is ready to be used for characterizing site-specific protein glycosylation in complex samples.
Assuntos
Biologia Computacional/métodos , Glicopeptídeos/sangue , Glicopeptídeos/genética , Sequência de Aminoácidos , Animais , Bovinos , Glicopeptídeos/análise , Humanos , Dados de Sequência Molecular , SuínosRESUMO
O-Glycosylation of collagen is a unique type of posttranslational modifications (PTMs) involving the attachment of galactose (Gal) or glucose-galactose (Glc-Gal) moieties to hydroxylysine (HyK). Also, hydroxyproline (HyP) result from the posttranslational hydroxylation of some proline residues in collagen. Here, LC-MS/MS was effectively employed to identify 23 O-glycosylation sites and a large number of HyP residues associated with bovine type II collagen α-1 chain (CO2A1). The modifications of the 23 O-glycosylation sites varied qualitatively and quantitatively. Both Gal and Glc-Gal moieties occupied 22 of the identified glycosylation sites, while K773 was observed as unmodified. A large number of HyP residues at Yaa positions of Gly-Xaa-Yaa motif were detected. HyP residues at Xaa positions of Gly-HyP-HyP, Gly-HyP-Ala, and Gly-HyP-Val motifs were also observed. Notably, HyP residue of Gly-HyP-Gln motif was detected, which has not been previously reported. Moreover, the deamidation of 8 Asn residues was identified, of which 2 Asp residues were observed at different retention times because of isomerization (Asp vs isoAsp). Partial macroheterogeneities of some CO2A1 glycosylation sites were revealed by LC-MS/MS analysis. ETD experiments revealed partial macroheterogeneities associated with K299-K308, K452-K464, K464-K470, and K857-K884 glycosylation sites. Semiquantitative data suggest that the glycosylation of hydroxylysine residues is site-specific.