Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Adv Sci (Weinh) ; 11(22): e2310202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493491

RESUMO

The reductive catalytic fractionation (RCF) of lignocellulose, considering lignin valorization at design time, has demonstrated the entire utilization of all lignocellulose components; however, such processes always require catalysts based on precious metals or high-loaded nonprecious metals. Herein, the study develops an ultra-low loaded, atomically dispersed cobalt catalyst, which displays an exceptional performance in the RCF of lignocellulose. An approximately theoretical maximum yield of phenolic monomers (48.3 wt.%) from lignin is realized, rivaling precious metal catalysts. High selectivity toward 4-propyl-substituted guaiacol/syringol facilitates their purification and follows syntheses of highly adhesive polyesters. Lignin nanoparticles (LNPs) are generated by simple treatment of the obtained phenolic dimers and oligomers. RCF-resulted carbohydrate pulp are more obedient to enzymatic hydrolysis. Experimental studies on lignin model compounds reveal the concerted cleavage of Cα-O and Cß-O pathway for the rupture of ß-O-4 structure. Overall, the approach involves valorizing products derived from lignin biopolymer, providing the opportunity for the comprehensive utilization of all components within lignocellulose.

3.
Nat Commun ; 14(1): 4285, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463897

RESUMO

The conversion of lignocellulosic feedstocks to fermentable sugar for biofuel production is inefficient, and most strategies to enhance efficiency directly target lignin biosynthesis, with associated negative growth impacts. Here we demonstrate, for both laboratory- and field-grown plants, that expression of Pag-miR408 in poplar (Populus alba × P. glandulosa) significantly enhances saccharification, with no requirement for acid-pretreatment, while promoting plant growth. The overexpression plants show increased accessibility of cell walls to cellulase and scaffoldin cellulose-binding modules. Conversely, Pag-miR408 loss-of-function poplar shows decreased cell wall accessibility. Overexpression of Pag-miR408 targets three Pag-LACCASES, delays lignification, and modestly reduces lignin content, S/G ratio and degree of lignin polymerization. Meanwhile, the LACCASE loss of function mutants exhibit significantly increased growth and cell wall accessibility in xylem. Our study shows how Pag-miR408 regulates lignification and secondary growth, and suggest an effective approach towards enhancing biomass yield and saccharification efficiency in a major bioenergy crop.


Assuntos
MicroRNAs , Populus , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , MicroRNAs/genética , Biomassa , Populus/metabolismo
4.
Polymers (Basel) ; 15(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37376378

RESUMO

Castor is an important non-edible oilseed crop used in the production of high-quality bio-oil. In this process, the leftover tissues rich in cellulose, hemicellulose and lignin are regarded as by-products and remain underutilized. Lignin is a crucial recalcitrance component, and its composition and structure strongly limit the high-value utilization of raw materials, but there is a lack of detailed studies relating to castor lignin chemistry. In this study, lignins were isolated from various parts of the castor plant, namely, stalk, root, leaf, petiole, seed endocarp and epicarp, using the dilute HCl/dioxane method, and the structural features of the as-obtained six lignins were investigated. The analyses indicated that endocarp lignin contained catechyl (C), guaiacyl (G) and syringyl (S) units, with a predominance of C unit [C/(G+S) = 6.9:1], in which the coexisted C-lignin and G/S-lignin could be disassembled completely. The isolated dioxane lignin (DL) from endocarp had a high abundance of benzodioxane linkages (85%) and a low level of ß-ß linkages (15%). The other lignins were enriched in G and S units with moderate amounts of ß-O-4 and ß-ß linkages, being significantly different from endocarp lignin. Moreover, only p-coumarate (pCA) incorporated into the epicarp lignin was observed, with higher relative content, being rarely reported in previous studies. The catalytic depolymerization of isolated DL generated 1.4-35.6 wt% of aromatic monomers, among which DL from endocarp and epicarp have high yields and excellent selectivity. This work highlights the differences in lignins from various parts of the castor plant, providing a solid theory for the high-value utilization of the whole castor plant.

5.
Int J Biol Macromol ; 239: 124256, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996963

RESUMO

The search for feedstock of catechyl lignin (C-lignin) is great interest and importance, as C-lignin featuring homogeneity and linearity is considered as an "ideal lignin" archetype for valorization and exits in only a few plant seed coats. In this study, naturally occurring C-lignin is first discovered in the seed coats of Chinese tallow, which has the highest content of C-lignin (15.4 wt%) as compared with other known feedstocks. An optimized extraction procedure by ternary deep eutectic solvents (DESs) enables the complete disassembly of C-lignin and G/S-lignin coexisted in Chinese tallow seed coats, and characterizations revealed that the as-separated C-lignin sample is abundant in benzodioxane units with no observation of ß-O-4 structures from G/S-lignin. Catalytic depolymerization of C-lignin results in a simplex catechol product in 129 mg per gram seed coats, being higher than other reported feedstocks. Derivatizing the "black" C-lignin via the nucleophilic isocyanation of benzodioxane γ-OH leads to a "whitened C-lignin" with uniform laminar structure and excellent crystallization ability, being conducive to fabricating functional materials. Overall, this contribution showed that Chinses tallow seed coats are suitable feedstock for acquiring C-lignin biopolymer.


Assuntos
Euphorbiaceae , Lignina , Sementes , Biomassa , Catálise , Lignina/química , Sementes/química , Solventes/química , Euphorbiaceae/química
6.
J Am Chem Soc ; 145(2): 811-821, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36596224

RESUMO

The catalytic transformation of N2 to NH3 by transition metal complexes is of great interest and importance but has remained a challenge to date. Despite the essential role of vanadium in biological N2 fixation, well-defined vanadium complexes that can catalyze the conversion of N2 to NH3 are scarce. In particular, a V(NxHy) intermediate derived from proton/electron transfer reactions of coordinated N2 remains unknown. Here, we report a dinitrogen-bridged divanadium complex bearing POCOP (2,6-(tBu2PO)2-C6H3) pincer and aryloxy ligands, which can serve as a catalyst for the reduction of N2 to NH3 and N2H4. Low-temperature protonation and reduction of the dinitrogen complex afforded the first structurally characterized neutral metal hydrazido(2-) species ([V]═NNH2), which mediated 15N2 conversion to 15NH3, indicating that it is a plausible intermediate of the catalysis. DFT calculations showed that the vanadium hydrazido complex [V]═NNH2 possessed a N-H bond dissociation free energy (BDFEN-H) of as high as 59.1 kcal/mol. The protonation of a vanadium amide complex ([V]-NH2) with [Ph2NH2][OTf] resulted in the release of NH3 and the formation of a vanadium triflate complex, which upon reduction under N2 afforded the vanadium dinitrogen complex. These transformations model the final steps of a vanadium-catalyzed N2 reduction cycle. Both experimental and theoretical studies suggest that the catalytic reaction may proceed via a distal pathway to liberate NH3. These findings provide unprecedented insights into the mechanism of N2 reduction related to FeV nitrogenase.


Assuntos
Amônia , Vanádio , Amônia/química , Oxirredução , Nitrogenase/metabolismo , Prótons , Catálise
7.
Nat Commun ; 13(1): 4716, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953497

RESUMO

Producing monomeric phenols from lignin biopolymer depolymerization in a detachable and efficient manner comes under the spotlight on the fullest utilization of sustainable lignocellulosic biomass. Here, we report a low-loaded and highly dispersed Ru anchored on a chitosan-derived N-doped carbon catalyst (RuN/ZnO/C), which exhibits outstanding performance in the reductive catalytic fractionation of lignocellulose. Nearly theoretical maximum yields of phenolic monomers from lignin are achieved, corresponding to TON as 431 molphenols molRu-1, 20 times higher than that from commercial Ru/C catalyst; high selectivity toward propyl end-chained guaiacol and syringol allow them to be readily purified. The RCF leave high retention of (hemi)cellulose amenable to enzymatic hydrolysis due to the successful breakdown of biomass recalcitrance. The RuN/ZnO/C catalyst shows good stability in recycling experiments as well as after a harsh hydrothermal treatment, benefiting from the coordination of Ru species with N atoms. Characterizations of the RuN/ZnO/C imply a transformation from Ru single atoms to nanoclusters under current reaction conditions. Time-course experiment, as well as reactivity screening of a series of lignin model compounds, offer insight into the mechanism of current RCF over RuN/ZnO/C. This work opens a new opportunity for achieving the valuable aromatic products from lignin and promoting the industrial economic feasibility of lignocellulosic biomass.


Assuntos
Rutênio , Óxido de Zinco , Biomassa , Lignina , Fenóis
8.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887208

RESUMO

Poplar is not only an important woody plant, but also a model species for molecular plant studies. We identified PagGRF11 (pAxG07Gg0005700), a homolog of the Arabidopsis AtGRF1 (AT4G37740) and AtGRF2 (AT2G22840) gene. We transformed the poplar clone "84K" with PagGRF11, and the transgenic overexpressed plants (PagGRF11-OE) showed plant height reduction (dwarfing), stem diameter increase, internode shortening, and larger leaf area. The Arabidopsis overexpression line grf-oe (Overexpression of PagGRF11 in Arabidopsis), mutant line atgrf (a loss-of-function mutant of the AtGRF1 gene of Arabidopsis thaliana), and mutant trans-complementary line atgrf+oe (overexpression of PagGRF11 in mutant plants (atgrf)) also showed different leaf size phenotypes. Further, tissue sections revealed that increased xylem production was the main cause of stem thickening. Transcriptome differential expression analysis of PagGRF11 overexpressed and control plants showed that PagGRF11 promoted CCCH39(C3H39) expression. The expression profile of CCCH39 in different tissues showed that it was highly expressed in xylem. Yeast single hybrid and instantaneous double luciferase assay results showed that PagGRF11 directly transcribed and activated CCCH39 expression through interaction with cis-acting element GARE (TCTGTTG), thus promoting xylem development. This is the first finding that GRF positively regulates xylem development through CCCH39 expression activation and further suggests that PagGRF11 is a potential target for increasing wood yield.


Assuntos
Arabidopsis , Populus , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Madeira/genética , Xilema/metabolismo
9.
Dalton Trans ; 51(32): 12250-12257, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895309

RESUMO

A series of first-row early transition metal dialkyl complexes bearing pincer ligands [(POCOP)M(CH2SiMe3)2] (POCOP: (2,6-(tBu2PO)2-C6H3); 1-Sc: M = Sc; 1-Ti: M = Ti; 1-V: M = V) and [(PCP)M(CH2SiMe3)2] (PCP: (2,6-(tBu2PCH2)2-C6H3); 2-Sc: M = Sc; 2-Ti: M = Ti) have been synthesized. These dialkyl complexes were characterized by single-crystal X-ray diffraction, NMR spectroscopy, and solution magnetic susceptibility (Evans method) analyses appropriately. All the complexes exhibited square pyramidal geometries with different extents of distortion. The activities of these complexes were further explored in styrene polymerization, in which combinations of scandium complexes (1-Sc or 2-Sc) with [Ph3C][B(C6F5)4] were found to be active catalytic systems for highly syndiospecific (>99% rrrr) polymerization of styrene. Meanwhile, the Ti(III) complexes 1-Ti and 2-Ti showed rather low activity in styrene polymerization, which stands in sharp contrast to those in previous reports involving Ti(III) catalysts bearing cyclopentadienyl derivative ligands.

10.
ChemSusChem ; 15(14): e202200646, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35548878

RESUMO

Catechyl lignin (C-lignin) is a naturally occurring linear homogeneous biopolymer composed solely of caffeyl alcohol subunits with cleavable benzodioxane linkages. The inherent structural features of propenylcatechol, a direct depolymerized product of castor seed coats C-lignin, render it a sustainable and promising platform for the synthesis of bioactive molecules. Herein, diversified transformations of propenylcatechol, including C=C bond difunctionalization, ß-modification, ß,γ-rearrangement, and γ-methyl derivatization, were reported based on known or developed methods. A series of functional molecular skeletons involved in the current synthetic routes for the preparation of pharmaceuticals and bioactive molecules were obtained. Starting from castor seed coats, annuloline (natural product) and CC-5079 (antitumor) were synthesized using facile and inexpensive reagents in only four- and five-sequence reactions, respectively, thereby demonstrating a superior step-efficiency to that of reported synthetic routes. Almost all atoms in the C-lignin biopolymer were incorporated into the final products owing to the intrinsic structures of naturally occurring C-lignin. Bioactive molecules produced from C-lignin integrate a low-carbon footprint with high-quality and economical manufacture of pharmaceuticals.


Assuntos
Álcoois , Lignina , Biopolímeros , Lignina/química , Preparações Farmacêuticas
11.
Chemosphere ; 293: 133539, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34998851

RESUMO

NH3 molecularly imprinted polymers (NH3-MIPs) were synthesized that could successfully separate and recover NH3 during sludge aerobic composting; however, increased toluene usage during the adsorbent preparation incurred a high cost and severe environmental risks. The purpose of this study was to reduce toluene usage by optimizing the reagent composition of NH3-MIPs, based on maintaining a high NH3 adsorption capacity and selectivity. Five adsorbent groups, including NH3-MIPs, and NH3-Ethylene dimethacrylate adsorbents (NH3-EGDMA) with 0%, 75%, 90%, and 100% toluene reduction efficiencies, were prepared and tested for their adsorption performance. The results showed that NH3-EGDMA with 75% toluene reduction not only had a high NH3 adsorption capacity (104.42 mg g-1) but also had a high separation factor for NH3/methyl sulfide (3121) and NH3/dimethyl disulfide (4597). The adsorption mechanism was identified as a chemical force between NH3 and NH3-EGDMA with a 75% toluene reduction using the analysis of the kinetic model. This study significantly reduces NH3 adsorbent cost as well as harm to the environment during the adsorbent preparation, which was beneficial to the popularization and application of this NH3 adsorbent.


Assuntos
Compostagem , Impressão Molecular , Adsorção , Metacrilatos
12.
Nat Commun ; 12(1): 416, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462206

RESUMO

C-lignin is a homo-biopolymer, being made up of caffeyl alcohol exclusively. There is significant interest in developing efficient and selective catalyst for depolymerization of C-lignin, as it represents an ideal feedstock for producing catechol derivatives. Here we report an atomically dispersed Ru catalyst, which can serve as an efficient catalyst for the hydrogenolysis of C-lignin via the cleavage of C-O bonds in benzodioxane linkages, giving catechols in high yields with TONs up to 345. A unique selectivity to propenylcatechol (77%) is obtained, which is otherwise hard to achieve, because this catalyst is capable of hydrogenolysis rather than hydrogenation. This catalyst also demonstrates good reusability in C-lignin depolymerization. Detailed investigations by model compounds concluded that the pathways involving dehydration and/or dehydrogenation reactions are incompatible routes; we deduced that caffeyl alcohol generated via concurrent C-O bonds cleavage of benzodioxane unit may act as an intermediate in the C-lignin hydrogenolysis. Current demonstration validates that atomically dispersed metals can not only catalyze small molecules reactions, but also drive the transformation of abundant and renewable biopolymer.


Assuntos
Catecóis/química , Lignina/química , Rutênio/química , Catálise
13.
J Org Chem ; 85(17): 11104-11115, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32786649

RESUMO

Remote C-H functionalization at C5 is the most sparingly observed selectivity in the functionalization of indole templates. Herein, we reported that the combination of a AgSbF6 catalyst and phenyliodine diacetate oxidation enabled the C-H selenylation at the C5 position of indole scaffolds in a selective version, thus leading to the formation of a wide scope of 5-selenylated indole derivatives, which are otherwise difficult to prepare. Mechanistic studies indicated that current transformation follows a radical process, and the tethered C3 pivaloyl group on indole scaffolds plays roles in both blocking the active C3 position and manipulating the electronic affinity of the arenes.

14.
ChemSusChem ; 13(19): 5199-5212, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32748524

RESUMO

The lignin-first strategy has emerged as one of the most powerful approaches for generating novel platform chemicals from lignin by efficient depolymerization of native lignin. Because of the emergence of this novel depolymerization method and the definition of viable platform chemicals, future focus will soon shift towards innovative downstream processing strategies. Very recently, many interesting approaches have emerged that describe the production of valuable products across the whole value chain, including bulk and fine chemical building blocks, and several concrete examples have been developed for the production of polymers, pharmaceutically relevant compounds, or fuels. This Minireview provides an overview of these recent advances. After a short summary of catalytic systems for obtaining aromatic monomers, a comprehensive discussion on their separation and applications is given. This Minireview will fill the gap in biorefinery between deriving high yields of lignin monomers and tapping into their potential for making valuable consumer products.

15.
Biotechnol Biofuels ; 13: 2, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31921351

RESUMO

BACKGROUND: Lignocellulosic biomass, which is composed of cellulose, hemicellulose and lignin, represents the most abundant renewable carbon source with significant potential for the production of sustainable chemicals and fuels. Current biorefineries focus on cellulose and hemicellulose valorization, whereas lignin is treated as a waste product and is burned to supply energy to the biorefineries. The depolymerization of lignin into well-defined mono-aromatic chemicals suitable for downstream processing is recognized increasingly as an important starting point for lignin valorization. In this study, conversion of all three components of Eucalyptus grandis into the corresponding monomeric chemicals was investigated using solid and acidic catalyst in sequence. RESULTS: Lignin was depolymerized into well-defined monomeric phenols in the first step using a Pd/C catalyst. The maximum phenolic monomers yield of 49.8 wt% was achieved at 240 °C for 4 h under 30 atm H2. In the monomers, 4-propanol guaiacol (12.9 wt%) and 4-propanol syringol (31.9 wt%) were identified as the two major phenolic products with 90% selectivity. High retention of cellulose and hemicellulose pulp was also obtained, which was treated with FeCl3 catalyst to attain 5-hydroxymethylfurfural, levulinic acid and furfural simultaneously. The optimal reaction condition for the co-conversion of hemicellulose and cellulose was established as 190 °C and 100 min, from which furfural and levulinic acid were obtained in 55.9% and 73.6% yields, respectively. Ultimately, 54% of Eucalyptus sawdust can be converted into well-defined chemicals under such an integrated biorefinery method. CONCLUSIONS: A two-step process (reductive catalytic fractionation followed by FeCl3 catalysis) allows the fractionation of all the three biopolymers (cellulose, hemicellulose, and lignin) in Eucalyptus biomass, which provides a promising strategy to make high-value chemicals from sustainable biomass.

16.
Bioresour Technol ; 285: 121335, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31003204

RESUMO

Reductive catalytic fractionation (RCF) has emerged as a new biorefinery paradigm for the fractionation and sequential utilization of entire components of biomass. Herein, we investigated the RCF of bamboo, a highly abundant herbaceous feedstock, in the presence of Pd/C catalyst. The lignin fraction in bamboo was preferentially depolymerized into well-defined low-molecular-weight phenols, with leaving carbohydrates pulp as a solid residue. In the soluble fraction, four major phenolic compounds, e.g., methyl coumarate/ferulate derived from hydroxycinnamic units and propanol guaiacol/syringol derived from ß-O-4 units, were generated up to 41.7 wt% yield based on original lignin content. In the insoluble fraction, the carbohydrates of bamboo were recovered with high retentions of cellulose (68%) and hemicellulose (49%), which upon treatment with enzyme gave glucose (90%) and xylose (85%). Overall, the three major components of bamboo could efficient to be fractionated and converted into useful platform chemicals on the basis of this study.


Assuntos
Celulose , Lignina , Biomassa , Catálise , Fracionamento Químico
17.
Small ; 14(48): e1803015, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30328265

RESUMO

Layered serpentine Ni3 Ge2 O5 (OH)4 is compositionally active and structurally favorable for adsorption and diffusion of reactants in oxygen evolution reactions (OER). However, one of the major problems for these materials is limited active sites and low efficiency for OER. In this regard, a new catalyst consisting of layered serpentine Ni3 Ge2 O5 (OH)4 nanosheets is introduced via a controlled one-step synthetic process where the morphology, size, and layers are well tailored. The theoretical calculations indicate that decreased layers and increased exposure of (100) facets in serpentine Ni3 Ge2 O5 (OH)4 lead to much lower Gibbs free energy in adsorption of reactive intermediates. Experimentally, it is found that the reduction in number of layers with minimized particle size exhibits plenty of highly surface-active sites of (100) facets and demonstrates a much enhanced performance in OER than the corresponding multilayered nanosheets. Such a strategy of tailoring active sites of serpentine Ni3 Ge2 O5 (OH)4 nanosheets offers an effective method to design highly efficient electrocatalysts.

18.
ChemSusChem ; 11(13): 2114-2123, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29660264

RESUMO

Lignin is the largest renewable resource of bioaromatics, and the catalytic fragmentation of lignin into phenolic monomers is increasingly recognized as an important starting point for lignin valorization. Herein, we report that ZnMoO4 supported on MCM-41 can catalyze the fragmentation of biorefinery technical lignin, enzymatic mild acidolysis lignin, and native lignin derived from corncob to yield lignin oily products that contain 15-37.8 wt % phenolic monomers, in which the high selectivities towards methyl coumarate (1) and methyl ferulate (2) were obtained (up to 78 %). The effects of some key parameters such as the influence of the solvent, reaction temperature, time, H2 pressure, and catalyst dosage were examined in view of activity and selectivity. The loss of Zn from the catalyst is discussed as the primary cause of deactivation, and the catalytic activity and selectivity can be well preserved in at least six runs by thermal calcination. The high selectivity to 1 and 2 leads to their easy separation and purification from lignin oily product to provide sustainable monomers for the preparation of functional polyether esters and polyesters.

19.
ChemSusChem ; 11(9): 1474-1478, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29575709

RESUMO

The search for nonprecious-metal-based catalysts for the synthesis of γ-valerolactone (GVL) through hydrogenation of levulinic acid and its derivatives in an efficient fashion is of great interest and importance, as GVL is an important a sustainable liquid. We herein report a pincer iron complex that can efficiently catalyze the hydrogenation of levulinic acid and methyl levulinate into GVL, achieving a turnover number of up to 23 000 and a turnover frequency of 1917 h-1 . This iron-based catalyst also enabled the formation of GVL from various biomass-derived carbohydrates in aqueous solution, thus paving a new way toward a renewable chemical industry.

20.
ChemSusChem ; 11(7): 1157-1162, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29484826

RESUMO

The search for efficient routes for the production of fructose from biomass-derived glucose is of great interest and importance, as fructose is a highly attractive substrate in the conversion of cellulosic biomass into biofuels and chemicals. In this study, a one-pot, multistep procedure involving enzyme-catalyzed oxidation of glucose at C2 and Ni/C-catalyzed hydrogenation of d-glucosone at C1 selectively gives fructose in 77 % yield. Starting from upstream substrates such as α-cellulose and starch, fructose was also generated with similar efficiency and selectivity by the combination of enzymatic and heterogeneous catalysis. This method constitutes a new means of preparing fructose from biomass-derived substrates in an efficient fashion.


Assuntos
Aldose-Cetose Isomerases/metabolismo , Enzimas Imobilizadas/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Biomassa , Catálise , Celulose/metabolismo , Temperatura Alta , Isomerismo , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA