Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 122023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37104115

RESUMO

Transplantation of neural stem cells (NSCs) has been proved to promote functional rehabilitation of brain lesions including ischemic stroke. However, the therapeutic effects of NSC transplantation are limited by the low survival and differentiation rates of NSCs due to the harsh environment in the brain after ischemic stroke. Here, we employed NSCs derived from human induced pluripotent stem cells together with exosomes extracted from NSCs to treat cerebral ischemia induced by middle cerebral artery occlusion/reperfusion in mice. The results showed that NSC-derived exosomes significantly reduced the inflammatory response, alleviated oxidative stress after NSC transplantation, and facilitated NSCs differentiation in vivo. The combination of NSCs with exosomes ameliorated the injury of brain tissue including cerebral infarction, neuronal death, and glial scarring, and promoted the recovery of motor function. To explore the underlying mechanisms, we analyzed the miRNA profiles of NSC-derived exosomes and the potential downstream genes. Our study provided the rationale for the clinical application of NSC-derived exosomes as a supportive adjuvant for NSC transplantation after stroke.


Assuntos
Isquemia Encefálica , Exossomos , Células-Tronco Pluripotentes Induzidas , AVC Isquêmico , Camundongos , Humanos , Animais , Isquemia Encefálica/terapia , Infarto Cerebral , Diferenciação Celular/fisiologia
2.
Cell Biosci ; 12(1): 167, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209136

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by aggregation of the mutant huntingtin (mHTT) protein encoded from extra tracts of CAG repeats in exon 1 of the HTT gene. mHTT proteins are neurotoxic to render the death of neurons and a series of disease-associated phenotypes. The mHTT is degraded through autophagy pathway and ubiquitin-proteasome system (UPS). This study identified a small molecule, J3, as an autophagy inducer by high-content screening. The results revealed that J3 could inhibit mTOR, thus promoting autophagic flux and long-lived protein degradation. Further, J3 selectively lowered the soluble and insoluble mHTT but not wild type HTT levels in cell models. The HdhQ140 mice showed reduced HD-associated activity and loss of motor functions. However, administration of J3 showed increased activity and a slight improvement in the motor function in the open-field test, balance beam test, and rotarod tests. Furthermore, in vivo studies revealed that J3 decreased T-HTT and misfolded protein levels in the striatum and increased the levels of the medium spiny neuron marker DARPP-32. In addition, J3 showed good permeability across the brain-blood barrier efficiently, suggesting that J3 was a promising candidate for the treatment of HD.

3.
Proc Natl Acad Sci U S A ; 119(10): e2114303119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238684

RESUMO

Identifying inhibitors of pathogenic proteins is the major strategy of targeted drug discoveries. This strategy meets challenges in targeting neurodegenerative disorders such as Huntington's disease (HD), which is mainly caused by the mutant huntingtin protein (mHTT), an "undruggable" pathogenic protein with unknown functions. We hypothesized that some of the chemical binders of mHTT may change its conformation and/or stability to suppress its downstream toxicity, functioning similarly to an "inhibitor" under a broader definition. We identified 21 potential mHTT selective binders through a small-molecule microarray­based screening. We further tested these compounds using secondary phenotypic screens for their effects on mHTT-induced toxicity and revealed four potential mHTT-binding compounds that may rescue HD-relevant phenotypes. Among them, a Food and Drug Administration­approved drug, desonide, was capable of suppressing mHTT toxicity in HD cellular and animal models by destabilizing mHTT through enhancing its polyubiquitination at the K6 site. Our study reveals the therapeutic potential of desonide for HD treatment and provides the proof of principle for a drug discovery pipeline: target-binder screens followed by phenotypic validation and mechanistic studies.


Assuntos
Desonida , Proteína Huntingtina , Doença de Huntington , Mutação , Animais , Desonida/química , Desonida/farmacologia , Modelos Animais de Doenças , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Camundongos Transgênicos , Estabilidade Proteica/efeitos dos fármacos
5.
Nature ; 591(7850): 431-437, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33505021

RESUMO

Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Canais de Potássio/metabolismo , Potássio/metabolismo , Animais , Biocatálise , Neurônios Dopaminérgicos/metabolismo , Feminino , Mutação com Ganho de Função , Células HEK293 , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Knockout , Destreza Motora , Complexos Multiproteicos/química , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Doença de Parkinson/genética , Canais de Potássio/química , Canais de Potássio/deficiência , Canais de Potássio/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , alfa-Sinucleína/metabolismo
6.
Brain ; 141(6): 1782-1798, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29608652

RESUMO

See Huang and Gitler (doi:10.1093/brain/awy112) for a scientific commentary on this article.Lowering the levels of disease-causing proteins is an attractive treatment strategy for neurodegenerative disorders, among which Huntington's disease is an appealing disease for testing this strategy because of its monogenetic nature. Huntington's disease is mainly caused by cytotoxicity of the mutant HTT protein with an expanded polyglutamine repeat tract. Lowering the soluble mutant HTT may reduce its downstream toxicity and provide potential treatment for Huntington's disease. This is hard to achieve by small-molecule compound drugs because of a lack of effective targets. Here we demonstrate Gpr52, an orphan G protein-coupled receptor, as a potential Huntington's disease drug target. Knocking-out Gpr52 significantly reduces mutant HTT levels in the striatum and rescues Huntington's disease-associated behavioural phenotypes in a knock-in Huntington's disease mouse model expressing endogenous mutant Htt. Importantly, a novel Gpr52 antagonist E7 reduces mutant HTT levels and rescues Huntington's disease-associated phenotypes in cellular and mouse models. Our study provides an entry point for Huntington's disease drug discovery by targeting Gpr52.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mutação/genética , Receptores Acoplados a Proteínas G/deficiência , Fatores Etários , Animais , Benzamidas/uso terapêutico , Corpo Estriado/metabolismo , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Comportamento Exploratório/fisiologia , Marcha/fisiologia , Células HEK293 , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/fisiopatologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Fenótipo , Quinoxalinas/uso terapêutico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Tiofenos/uso terapêutico , Caminhada/fisiologia
7.
Cell Res ; 27(12): 1441-1465, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29151587

RESUMO

Most neurodegenerative disorders are associated with accumulation of disease-relevant proteins. Among them, Huntington disease (HD) is of particular interest because of its monogenetic nature. HD is mainly caused by cytotoxicity of the defective protein encoded by the mutant Huntingtin gene (HTT). Thus, lowering mutant HTT protein (mHTT) levels would be a promising treatment strategy for HD. Here we report two kinases HIPK3 and MAPK11 as positive modulators of mHTT levels both in cells and in vivo. Both kinases regulate mHTT via their kinase activities, suggesting that inhibiting these kinases may have therapeutic values. Interestingly, their effects on HTT levels are mHTT-dependent, providing a feedback mechanism in which mHTT enhances its own level thus contributing to mHTT accumulation and disease progression. Importantly, knockout of MAPK11 significantly rescues disease-relevant behavioral phenotypes in a knockin HD mouse model. Collectively, our data reveal new therapeutic entry points for HD and target-discovery approaches for similar diseases.


Assuntos
Modelos Animais de Doenças , Proteína Huntingtina/genética , Doença de Huntington/genética , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteína Quinase 11 Ativada por Mitógeno/antagonistas & inibidores , Mutação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Células Cultivadas , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 11 Ativada por Mitógeno/deficiência , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo
8.
Front Behav Neurosci ; 11: 184, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29021748

RESUMO

Recent studies show that emotional and environmental stimuli promote epigenetic inheritance and influence behavioral development in the subsequent generations. Caloric mal- and under-nutrition has been shown to cause metabolic disturbances in the subsequent generation, but the incentive properties of paternal binge-like eating in offspring is still unknown. Here we show that paternal sucrose self-administration experience could induce inter-generational decrease in both sucrose and cocaine-seeking behavior, and sucrose responding in F1 rats, but not F2, correlated with the performance of F0 rats in sucrose self-administration. Higher anxiety level and decreased cocaine sensitivity were observed in Sucrose F1 compared with Control F1, possibly contributing to the desensitization phenotype in cocaine and sucrose self-administration. Our study revealed that paternal binge-like sucrose consumption causes decrease in reward seeking and induces anxiety-like behavior in the F1 offspring.

9.
Nat Commun ; 8: 15527, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28556835

RESUMO

Liability to develop drug addiction is heritable, but the precise contribution of non-Mendelian factors is not well understood. Here we separate male rats into addiction-like and non-addiction-like groups, based on their incentive motivation to seek cocaine. We find that the high incentive responding of the F0 generation could be transmitted to F1 and F2 generations. Moreover, the inheritance of high incentive response to cocaine is contingent on high motivation, as it is elicited by voluntary cocaine administration, but not high intake of cocaine itself. We also find DNA methylation differences between sperm of addiction-like and non-addiction-like groups that were maintained from F0 to F1, providing an epigenetic link to transcriptomic changes of addiction-related signalling pathways in the nucleus accumbens of offspring. Our data suggest that highly motivated drug seeking experience may increase vulnerability and/or reduce resistance to drug addiction in descendants.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Cocaína/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Animais , Comportamento Aditivo/genética , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Metilação de DNA , Modelos Animais de Doenças , Epigênese Genética , Feminino , Masculino , Aprendizagem em Labirinto , Motivação , Núcleo Accumbens/fisiologia , Ratos , Ratos Sprague-Dawley , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA