Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14950, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942754

RESUMO

This study utilized arterial spin labeling-magnetic resonance imaging (ASL-MRI) to explore the developmental trajectory of brain activity associated with attention deficit hyperactivity disorder (ADHD). Pulsed arterial spin labeling (ASL) data were acquired from 157 children with ADHD and 109 children in a control group, all aged 6-12 years old. Participants were categorized into the age groups of 6-7, 8-9, and 10-12, after which comparisons were performed between each age group for ASL analysis of cerebral blood flow (CBF). In total, the ADHD group exhibited significantly lower CBF in the left superior temporal gyrus and right middle frontal gyrus regions than the control group. Further analysis revealed: (1) The comparison between the ADHD group (N = 70) aged 6-7 and the age-matched control group (N = 33) showed no statistically significant difference between. (2) However, compared with the control group aged 8-9 (N = 39), the ADHD group of the same age (N = 53) showed significantly lower CBF in the left postcentral gyrus and left middle frontal gyrus regions. (3) Further, the ADHD group aged 10-12 (N = 34) demonstrated significantly lower CBF in the left superior occipital region than the age-matched control group (N = 37). These age-specific differences suggest variations in ADHD-related domains during brain development post age 6-7.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Marcadores de Spin , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Criança , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Circulação Cerebrovascular/fisiologia , Estudos de Casos e Controles , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38806237

RESUMO

BACKGROUND AND PURPOSE: The cerebral metabolic rate of oxygen (CMRO2) is considered a robust marker of the infarct core in 15°-tracer- based positron emission tomography. We aimed to delineate the infarct core in patients with acute ischemic stroke using commonly used relative cerebral blood flow (rCBF) < 30% and oxygen metabolism parameter of CMRO2 on CT perfusion in comparison with pre-treatment diffusion- weighted imaging (DWI)-derived infarct core volume. MATERIALS AND METHODS: Patients with acute ischemic stroke who met the inclusion criteria were recruited. The CMRO2 and CBF maps in CT perfusion were automatically generated using post-processing software. The infarct core volume was quantified with relative (r) CMRO2 < 20% - 30% and rCBF < 30%. The optimal threshold was defined as those that demonstrated the smallest mean absolute error, lowest mean infarct core volume difference, narrowest 95% limit of agreement, and largest intraclass correlation coefficient (ICC) against the DWI. RESULTS: This study included 76 patients (mean age ± standard deviation, 69.97 ± 12.15 years, 43 males). The optimal thresholds of rCMRO2 < 26% resulted in the lowest mean infarct core volume difference, narrowest 95% limit of agreement, and largest ICC among different thresholds. Bland-Altman analysis demonstrated a volumetric bias of 1.96 mL between DWI and rCMRO2 < 26%, whereas in cases of DWI and rCBF < 30%, the bias was notably larger at 14.10 mL. The highest correlation was observed for rCMRO2 < 26% (ICC=0.936), whereas rCBF < 30% showed a slightly lower ICC of 0.934. CONCLUSIONS: CT perfusion-derived CMRO2 is a promising parameter for estimating the infarct core volume in patients with acute ischemic stroke. ABBREVIATIONS: CMRO2 = cerebral metabolic rate of oxygen.

3.
Polymers (Basel) ; 15(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38231952

RESUMO

Confronting the pressing challenge of freshwater scarcity, polymeric membrane-based water treatment technology has emerged as an essential and effective approach. Poly(arylene ether)s (PAEs) polymers, a class of high-performance engineering thermoplastics, have garnered attention in recent decades as promising membrane materials for advanced water treatment approaches. The PAE-Based membranes are employed to resist the shortages of most common polymeric membranes, such as chemical instability, structural damage, membrane fouling, and shortened lifespan when deployed in harsh environments, owing to their excellent comprehensive performance. This article presents the advancements in the research of several typical PAEs, including poly(ether ether ketone) (PEEK), polyethersulfone (PES), and poly(arylene ether nitrile) (PEN). Techniques for membrane formation, modification strategies, and applications in water treatment have been reviewed. The applications encompass processes for oil/water separation, desalination, and wastewater treatment, which involve the removal of heavy metal ions, dyes, oils, and other organic pollutants. The commendable performance of these membranes has been summarized in terms of corrosion resistance, high-temperature resistance, anti-fouling properties, and durability in challenging environments. In addition, several recommendations for further research aimed at developing efficient and robust PAE-based membranes are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA