Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
mSystems ; 9(5): e0130523, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38682902

RESUMO

Microbial communities in nature are dynamically evolving as member species change their interactions subject to environmental variations. Accounting for such context-dependent dynamic variations in interspecies interactions is critical for predictive ecological modeling. In the absence of generalizable theoretical foundations, we lack a fundamental understanding of how microbial interactions are driven by environmental factors, significantly limiting our capability to predict and engineer community dynamics and function. To address this issue, we propose a novel theoretical framework that allows us to represent interspecies interactions as an explicit function of environmental variables (such as substrate concentrations) by combining growth kinetics and a generalized Lotka-Volterra model. A synergistic integration of these two complementary models leads to the prediction of alterations in interspecies interactions as the outcome of dynamic balances between positive and negative influences of microbial species in mixed relationships. The effectiveness of our method was experimentally demonstrated using a synthetic consortium of two Escherichia coli mutants that are metabolically dependent (due to an inability to synthesize essential amino acids) but competitively grow on a shared substrate. The analysis of the E. coli binary consortium using our model not only showed how interactions between the two amino acid auxotrophic mutants are controlled by the dynamic shifts in limiting substrates but also enabled quantifying previously uncharacterizable complex aspects of microbial interactions, such as asymmetry in interactions. Our approach can be extended to other ecological systems to model their environment-dependent interspecies interactions from growth kinetics.IMPORTANCEModeling environment-controlled interspecies interactions through separate identification of positive and negative influences of microbes in mixed relationships is a new capability that can significantly improve our ability to understand, predict, and engineer the complex dynamics of microbial communities. Moreover, the prediction of microbial interactions as a function of environmental variables can serve as valuable benchmark data to validate modeling and network inference tools in microbial ecology, the development of which has often been impeded due to the lack of ground truth information on interactions. While demonstrated against microbial data, the theory developed in this work is readily applicable to general community ecology to predict interactions among macroorganisms, such as plants and animals, as well as microorganisms.


Assuntos
Escherichia coli , Interações Microbianas , Interações Microbianas/fisiologia , Cinética , Escherichia coli/metabolismo , Modelos Biológicos , Meio Ambiente
2.
mSystems ; 7(5): e0037222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154140

RESUMO

Soil microorganisms provide key ecological functions that often rely on metabolic interactions between individual populations of the soil microbiome. To better understand these interactions and community processes, we used chitin, a major carbon and nitrogen source in soil, as a test substrate to investigate microbial interactions during its decomposition. Chitin was applied to a model soil consortium that we developed, "model soil consortium-2" (MSC-2), consisting of eight members of diverse phyla and including both chitin degraders and nondegraders. A multiomics approach revealed how MSC-2 community-level processes during chitin decomposition differ from monocultures of the constituent species. Emergent properties of both species and the community were found, including changes in the chitin degradation potential of Streptomyces species and organization of all species into distinct roles in the chitin degradation process. The members of MSC-2 were further evaluated via metatranscriptomics and community metabolomics. Intriguingly, the most abundant members of MSC-2 were not those that were able to metabolize chitin itself, but rather those that were able to take full advantage of interspecies interactions to grow on chitin decomposition products. Using a model soil consortium greatly increased our knowledge of how carbon is decomposed and metabolized in a community setting, showing that niche size, rather than species metabolic capacity, can drive success and that certain species become active carbon degraders only in the context of their surrounding community. These conclusions fill important knowledge gaps that are key to our understanding of community interactions that support carbon and nitrogen cycling in soil. IMPORTANCE The soil microbiome performs many functions that are key to ecology, agriculture, and nutrient cycling. However, because of the complexity of this ecosystem we do not know the molecular details of the interactions between microbial species that lead to these important functions. Here, we use a representative but simplified model community of bacteria to understand the details of these interactions. We show that certain species act as primary degraders of carbon sources and that the most successful species are likely those that can take the most advantage of breakdown products, not necessarily the primary degraders. We also show that a species phenotype, including whether it is a primary degrader or not, is driven in large part by the membership of the community it resides in. These conclusions are critical to a better understanding of the soil microbial interaction network and how these interactions drive central soil microbiome functions.


Assuntos
Quitina , Microbiota , Quitina/metabolismo , Solo/química , Microbiota/genética , Carbono , Nitrogênio/metabolismo
3.
Antioxidants (Basel) ; 11(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35453374

RESUMO

Arsenic, a naturally occurring metalloid derived from the environment, has been studied worldwide for its causative effects in various cancers. However, the effects of arsenic toxicity on the development and progression of metabolic syndrome, including obesity and diabetes, has received less attention. Many studies suggest that metabolic dysfunction and autophagy dysregulation of adipose and muscle tissues are closely related to the development of metabolic disease. In the USA, arsenic contamination has been reported in some ground water, soil and grain samples in major agricultural regions, but the effects on adipose and muscle tissue metabolism and autophagy have not been investigated much. Here, we highlight arsenic toxicity according to the species, dose and exposure time and the effects on adipose and muscle tissue metabolism and autophagy. Historically, arsenic was used as both a poison and medicine, depending on the dose and treatment time. In the modern era, arsenic intoxication has significantly increased due to exposure from water, soil and food, which could be a contributing factor in the development and progression of metabolic disease. From this review, a better understanding of the pathogenic mechanisms by which arsenic alters metabolism and autophagy regulation could become a cornerstone leading to the development of therapeutic strategies against arsenic-induced toxicity and metabolic disease.

5.
Biotechnol Bioeng ; 118(5): 1898-1912, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547803

RESUMO

Consolidated bioprocessing (CBP) of cellulose is a cost-effective route to produce valuable biochemicals by integrating saccharification, fermentation and cellulase synthesis in a single step. However, the lack of understanding of governing factors of interdependent saccharification and fermentation in CBP eludes reliable process optimization. Here, we propose a new framework that synergistically couples population balances (to simulate cellulose depolymerization) and cybernetic models (to model enzymatic regulation of fermentation) to enable improved understanding of CBP. The resulting framework, named the unified cybernetic-population balance model (UC-PBM), enables simulation of CBP driven by coordinated control of enzyme synthesis through closed-loop interactions. UC-PBM considers two key aspects in controlling CBP: (1) heterogeneity in cellulose properties and (2) cellular regulation of competing cell growth and cellulase secretion. In a case study on Clostridium thermocellum, UC-PBM not only provides a decent fit with various exometabolomic data, but also reveals that: (i) growth-decoupled cellulase-secreting pathways are only activated during famine conditions to promote the production of growth substrates, and (ii) starting cellulose concentration has a strong influence on the overall flux distribution. Equipped with mechanisms of cellulose degradation and fermentative regulations, UC-PBM is practical to explore phenotypic functions for primary evaluation of microorganisms' potential for metabolic engineering and optimal design of bioprocess.


Assuntos
Celulose/metabolismo , Clostridium thermocellum , Modelos Biológicos , Clostridium thermocellum/enzimologia , Clostridium thermocellum/metabolismo , Fermentação , Engenharia Metabólica , Redes e Vias Metabólicas/fisiologia
6.
Front Microbiol ; 11: 531756, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193121

RESUMO

Predictive biogeochemical modeling requires data-model integration that enables explicit representation of the sophisticated roles of microbial processes that transform substrates. Data from high-resolution organic matter (OM) characterization are increasingly available and can serve as a critical resource for this purpose, but their incorporation into biogeochemical models is often prohibited due to an over-simplified description of reaction networks. To fill this gap, we proposed a new concept of biogeochemical modeling-termed substrate-explicit modeling-that enables parameterizing OM-specific oxidative degradation pathways and reaction rates based on the thermodynamic properties of OM pools. Based on previous developments in the literature, we characterized the resulting kinetic models by only two parameters regardless of the complexity of OM profiles, which can greatly facilitate the integration with reactive transport models for ecosystem simulations by alleviating the difficulty in parameter identification. The two parameters include maximal growth rate (µmax) and harvest volume (Vh) (i.e., the volume that a microbe can access for harvesting energy). For every detected organic molecule in a given sample, our approach provides a systematic way to formulate reaction kinetics from chemical formula, which enables the evaluation of the impact of OM character on biogeochemical processes across conditions. In a case study of two sites with distinct OM thermodynamics using ultra high-resolution metabolomics datasets derived from Fourier transform ion cyclotron resonance mass spectrometry analyses, our method predicted how oxidative degradation is primarily driven by thermodynamic efficiency of OM consistent with experimental rate measurements (as shown by correlation coefficients of up to 0.61), and how biogeochemical reactions can vary in response to carbon and/or oxygen limitations. Lastly, we showed that incorporation of enzymatic regulations into substrate-explicit models is critical for more reasonable predictions. This result led us to present integrative biogeochemical modeling as a unifying framework that can ideally describe the dynamic interplay among microbes, enzymes, and substrates to address advanced questions and hypotheses in future studies. Altogether, the new modeling concept we propose in this work provides a foundational platform for unprecedented predictions of biogeochemical and ecosystem dynamics through enhanced integration with diverse experimental data and extant modeling approaches.

7.
Biochem Soc Trans ; 48(4): 1309-1321, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32726414

RESUMO

Probiotics are live beneficial microorganisms that can be consumed in the form of dairy and food products as well as dietary supplements to promote a healthy balance of gut bacteria in humans. Practically, the main challenge is to identify and select promising strains and formulate multi-strain probiotic blends with consistent efficacy which is highly dependent on individual dietary regimes, gut environments, and health conditions. Limitations of current in vivo and in vitro methods for testing probiotic strains can be overcome by in silico model guided systems biology approaches where genome scale metabolic models (GEMs) can be used to describe their cellular behaviors and metabolic states of probiotic strains under various gut environments. Here, we summarize currently available GEMs of microbial strains with probiotic potentials and propose a knowledge-based framework to evaluate metabolic capabilities on the basis of six probiotic criteria. They include metabolic characteristics, stability, safety, colonization, postbiotics, and interaction with the gut microbiome which can be assessed by in silico approaches. As such, the most suitable strains can be identified to design personalized multi-strain probiotics in the future.


Assuntos
Genoma Humano , Modelos Biológicos , Probióticos/metabolismo , Suplementos Nutricionais , Microbioma Gastrointestinal , Humanos
8.
Comput Struct Biotechnol J ; 18: 1259-1269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612750

RESUMO

Microbial communities organize into spatial patterns that are largely governed by interspecies interactions. This phenomenon is an important metric for understanding community functional dynamics, yet the use of spatial patterns for predicting microbial interactions is currently lacking. Here we propose supervised deep learning as a new tool for network inference. An agent-based model was used to simulate the spatiotemporal evolution of two interacting organisms under diverse growth and interaction scenarios, the data of which was subsequently used to train deep neural networks. For small-size domains (100 µm × 100 µm) over which interaction coefficients are assumed to be invariant, we obtained fairly accurate predictions, as indicated by an average R2 value of 0.84. In application to relatively larger domains (450 µm × 450 µm) where interaction coefficients are varying in space, deep learning models correctly predicted spatial distributions of interaction coefficients without any additional training. Lastly, we evaluated our model against real biological data obtained using Pseudomonas fluorescens and Escherichia coli co-cultures treated with polymeric chitin or N-acetylglucosamine, the hydrolysis product of chitin. While P. fluorescens can utilize both substrates for growth, E. coli lacked the ability to degrade chitin. Consistent with our expectations, our model predicted context-dependent interactions across two substrates, i.e., degrader-cheater relationship on chitin polymers and competition on monomers. The combined use of the agent-based model and machine learning algorithm successfully demonstrates how to infer microbial interactions from spatially distributed data, presenting itself as a useful tool for the analysis of more complex microbial community interactions.

9.
Sci Rep ; 10(1): 10882, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616808

RESUMO

The soil environment is constantly changing due to shifts in soil moisture, nutrient availability and other conditions. To contend with these changes, soil microorganisms have evolved a variety of ways to adapt to environmental perturbations, including regulation of gene expression. However, it is challenging to untangle the complex phenotypic response of the soil to environmental change, partly due to the absence of predictive modeling frameworks that can mechanistically link molecular-level changes in soil microorganisms to a community's functional phenotypes (or metaphenome). Towards filling this gap, we performed a combined analysis of metabolic and gene co-expression networks to explore how the soil microbiome responded to changes in soil moisture and nutrient conditions and to determine which genes were expressed under a given condition. Our integrated modeling approach revealed previously unknown, but critically important aspects of the soil microbiomes' response to environmental perturbations. Incorporation of metabolomic and transcriptomic data into metabolic reaction networks identified condition-specific signature genes that are uniquely associated with dry, wet, and glycine-amended conditions. A subsequent gene co-expression network analysis revealed that drought-associated genes occupied more central positions in a network model of the soil community, compared to the genes associated with wet, and glycine-amended conditions. These results indicate the occurrence of system-wide metabolic coordination when soil microbiomes cope with moisture or nutrient perturbations. Importantly, the approach that we demonstrate here to analyze large-scale multi-omics data from a natural soil environment is applicable to other microbiome systems for which multi-omics data are available.


Assuntos
Redes e Vias Metabólicas , Microbiota , Microbiologia do Solo , Proteínas de Bactérias/genética , Secas , Enzimas/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Glicina/farmacologia , Umidade , Kansas , Microbiota/genética , Transcriptoma
10.
Front Cell Dev Biol ; 8: 603421, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425907

RESUMO

Proper timely management of various external and internal stresses is critical for metabolic and redox homeostasis in mammals. In particular, dysregulation of mechanistic target of rapamycin complex (mTORC) triggered from metabolic stress and accumulation of reactive oxygen species (ROS) generated from environmental and genotoxic stress are well-known culprits leading to chronic metabolic disease conditions in humans. Sestrins are one of the metabolic and environmental stress-responsive groups of proteins, which solely have the ability to regulate both mTORC activity and ROS levels in cells, tissues and organs. While Sestrins are originally reported as one of several p53 target genes, recent studies have further delineated the roles of this group of stress-sensing proteins in the regulation of insulin sensitivity, glucose and fat metabolism, and redox-function in metabolic disease and aging. In this review, we discuss recent studies that investigated and manipulated Sestrins-mediated stress signaling pathways in metabolic and environmental health. Sestrins as an emerging dynamic group of stress-sensor proteins are drawing a spotlight as a preventive or therapeutic mechanism in both metabolic stress-associated pathologies and aging processes at the same time.

11.
Front Microbiol ; 10: 1264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263456

RESUMO

An intriguing aspect in microbial communities is that pairwise interactions can be influenced by neighboring species. This creates context dependencies for microbial interactions that are based on the functional composition of the community. Context dependent interactions are ecologically important and clearly present in nature, yet firmly established theoretical methods are lacking from many modern computational investigations. Here, we propose a novel network inference method that enables predictions for interspecies interactions affected by shifts in community composition and species populations. Our approach first identifies interspecies interactions in binary communities, which is subsequently used as a basis to infer modulation in more complex multi-species communities based on the assumption that microbes minimize adjustments of pairwise interactions in response to neighbor species. We termed this rule-based inference minimal interspecies interaction adjustment (MIIA). Our critical assessment of MIIA has produced reliable predictions of shifting interspecies interactions that are dependent on the functional role of neighbor organisms. We also show how MIIA has been applied to a microbial community composed of competing soil bacteria to elucidate a new finding that - in many cases - adding fewer competitors could impose more significant impact on binary interactions. The ability to predict membership-dependent community behavior is expected to help deepen our understanding of how microbiomes are organized in nature and how they may be designed and/or controlled in the future.

12.
mSystems ; 4(4)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186334

RESUMO

Climate change is causing shifts in precipitation patterns in the central grasslands of the United States, with largely unknown consequences on the collective physiological responses of the soil microbial community, i.e., the metaphenome. Here, we used an untargeted omics approach to determine the soil microbial community's metaphenomic response to soil moisture and to define specific metabolic signatures of the response. Specifically, we aimed to develop the technical approaches and metabolic mapping framework necessary for future systematic ecological studies. We collected soil from three locations at the Konza Long-Term Ecological Research (LTER) field station in Kansas, and the soils were incubated for 15 days under dry or wet conditions and compared to field-moist controls. The microbiome response to wetting or drying was determined by 16S rRNA amplicon sequencing, metatranscriptomics, and metabolomics, and the resulting shifts in taxa, gene expression, and metabolites were assessed. Soil drying resulted in significant shifts in both the composition and function of the soil microbiome. In contrast, there were few changes following wetting. The combined metabolic and metatranscriptomic data were used to generate reaction networks to determine the metaphenomic response to soil moisture transitions. Site location was a strong determinant of the response of the soil microbiome to moisture perturbations. However, some specific metabolic pathways changed consistently across sites, including an increase in pathways and metabolites for production of sugars and other osmolytes as a response to drying. Using this approach, we demonstrate that despite the high complexity of the soil habitat, it is possible to generate insight into the effect of environmental change on the soil microbiome and its physiology and functions, thus laying the groundwork for future, targeted studies.IMPORTANCE Climate change is predicted to result in increased drought extent and intensity in the highly productive, former tallgrass prairie region of the continental United States. These soils store large reserves of carbon. The decrease in soil moisture due to drought has largely unknown consequences on soil carbon cycling and other key biogeochemical cycles carried out by soil microbiomes. In this study, we found that soil drying had a significant impact on the structure and function of soil microbial communities, including shifts in expression of specific metabolic pathways, such as those leading toward production of osmoprotectant compounds. This study demonstrates the application of an untargeted multi-omics approach to decipher details of the soil microbial community's metaphenotypic response to environmental perturbations and should be applicable to studies of other complex microbial systems as well.

13.
Front Microbiol ; 10: 3049, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038529

RESUMO

Modulation of interspecies interactions by the presence of neighbor species is a key ecological factor that governs dynamics and function of microbial communities, yet the development of theoretical frameworks explicit for understanding context-dependent interactions are still nascent. In a recent study, we proposed a novel rule-based inference method termed the Minimal Interspecies Interaction Adjustment (MIIA) that predicts the reorganization of interaction networks in response to the addition of new species such that the modulation in interaction coefficients caused by additional members is minimal. While the theoretical basis of MIIA was established through the previous work by assuming the full availability of species abundance data in axenic, binary, and complex communities, its extension to actual microbial ecology can be highly constrained in cases that species have not been cultured axenically (e.g., due to their inability to grow in the absence of specific partnerships) because binary interaction coefficients - basic parameters required for implementing the MIIA - are inestimable without axenic and binary population data. Thus, here we present an alternative formulation based on the following two central ideas. First, in the case where only data from axenic cultures are unavailable, we remove axenic populations from governing equations through appropriate scaling. This allows us to predict neighbor-dependent interactions in a relative sense (i.e., fractional change of interactions between with versus without neighbors). Second, in the case where both axenic and binary populations are missing, we parameterize binary interaction coefficients to determine their values through a sensitivity analysis. Through the case study of two microbial communities with distinct characteristics and complexity (i.e., a three-member community where all members can grow independently, and a four-member community that contains member species whose growth is dependent on other species), we demonstrated that despite data limitation, the proposed new formulation was able to successfully predict interspecies interactions that are consistent with experimentally derived results. Therefore, this technical advancement enhances our ability to predict context-dependent interspecies interactions in a broad range of microbial systems without being limited to specific growth conditions as a pre-requisite.

14.
15.
ISME J ; 12(8): 2011-2023, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29795448

RESUMO

The advent of high-throughput 'omics approaches coupled with computational analyses to reconstruct individual genomes from metagenomes provides a basis for species-resolved functional studies. Here, a mutual information approach was applied to build a gene association network of a commensal consortium, in which a unicellular cyanobacterium Thermosynechococcus elongatus BP1 supported the heterotrophic growth of Meiothermus ruber strain A. Specifically, we used the context likelihood of relatedness (CLR) algorithm to generate a gene association network from 25 transcriptomic datasets representing distinct growth conditions. The resulting interspecies network revealed a number of linkages between genes in each species. While many of the linkages were supported by the existing knowledge of phototroph-heterotroph interactions and the metabolism of these two species several new interactions were inferred as well. These include linkages between amino acid synthesis and uptake genes, as well as carbohydrate and vitamin metabolism, terpenoid metabolism and cell adhesion genes. Further topological examination and functional analysis of specific gene associations suggested that the interactions are likely to center around the exchange of energetically costly metabolites between T. elongatus and M. ruber. Both the approach and conclusions derived from this work are widely applicable to microbial communities for identification of the interactions between species and characterization of community functioning as a whole.


Assuntos
Bactérias/genética , Cianobactérias/genética , Algoritmos , Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/fisiologia , Redes Reguladoras de Genes , Processos Heterotróficos , Metagenoma , Microbiota , Especificidade da Espécie , Transcriptoma
16.
Sci Rep ; 8(1): 297, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321512

RESUMO

The fundamental question of whether different microbial species will co-exist or compete in a given environment depends on context, composition and environmental constraints. Model microbial systems can yield some general principles related to this question. In this study we employed a naturally occurring co-culture composed of heterotrophic bacteria, Halomonas sp. HL-48 and Marinobacter sp. HL-58, to ask two fundamental scientific questions: 1) how do the phenotypes of two naturally co-existing species respond to partnership as compared to axenic growth? and 2) how do growth and molecular phenotypes of these species change with respect to competitive and commensal interactions? We hypothesized - and confirmed - that co-cultivation under glucose as the sole carbon source would result in competitive interactions. Similarly, when glucose was swapped with xylose, the interactions became commensal because Marinobacter HL-58 was supported by metabolites derived from Halomonas HL-48. Each species responded to partnership by changing both its growth and molecular phenotype as assayed via batch growth kinetics and global transcriptomics. These phenotypic responses depended on nutrient availability and so the environment ultimately controlled how they responded to each other. This simplified model community revealed that microbial interactions are context-specific and different environmental conditions dictate how interspecies partnerships will unfold.


Assuntos
Interações Microbianas , Microbiota , Fenótipo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Técnicas de Cocultura , Glucose/metabolismo
17.
Front Microbiol ; 8: 1866, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046664

RESUMO

In a recent study of denitrification dynamics in hyporheic zone sediments, we observed a significant time lag (up to several days) in enzymatic response to the changes in substrate concentration. To explore an underlying mechanism and understand the interactive dynamics between enzymes and nutrients, we developed a trait-based model that associates a community's traits with functional enzymes, instead of typically used species guilds (or functional guilds). This enzyme-based formulation allows to collectively describe biogeochemical functions of microbial communities without directly parameterizing the dynamics of species guilds, therefore being scalable to complex communities. As a key component of modeling, we accounted for microbial regulation occurring through transcriptional and translational processes, the dynamics of which was parameterized based on the temporal profiles of enzyme concentrations measured using a new signature peptide-based method. The simulation results using the resulting model showed several days of a time lag in enzymatic responses as observed in experiments. Further, the model showed that the delayed enzymatic reactions could be primarily controlled by transcriptional responses and that the dynamics of transcripts and enzymes are closely correlated. The developed model can serve as a useful tool for predicting biogeochemical processes in natural environments, either independently or through integration with hydrologic flow simulators.

18.
Bioinformatics ; 33(15): 2345-2353, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369193

RESUMO

MOTIVATION: Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). RESULTS: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. AVAILABILITY AND IMPLEMENTATION: The software is implemented in Matlab, and is provided as supplementary information . CONTACT: hyunseob.song@pnnl.gov. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Redes e Vias Metabólicas , Modelos Biológicos , Programação Linear , Software , Algoritmos
19.
ISME J ; 11(2): 405-414, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27801910

RESUMO

Productivity is a major determinant of ecosystem diversity. Microbial ecosystems are the most diverse on the planet yet very few relationships between diversity and productivity have been reported as compared with macro-ecological studies. Here we evaluated the spatial relationships of productivity and microbiome diversity in a laboratory-cultivated photosynthetic mat. The goal was to determine how spatial diversification of microorganisms drives localized carbon and energy acquisition rates. We measured sub-millimeter depth profiles of net primary productivity and gross oxygenic photosynthesis in the context of the localized microenvironment and community structure, and observed negative correlations between species richness and productivity within the energy-replete, photic zone. Variations between localized community structures were associated with distinct taxa as well as environmental profiles describing a continuum of biological niches. Spatial regions in the photic zone corresponding to high primary productivity and photosynthesis rates had relatively low-species richness and high evenness. Hence, this system exhibited negative species-productivity and species-energy relationships. These negative relationships may be indicative of stratified, light-driven microbial ecosystems that are able to be the most productive with a relatively smaller, even distributions of species that specialize within photic zones.


Assuntos
Biodiversidade , Microbiota/fisiologia , Carbono/metabolismo , Ecossistema , Metabolismo Energético , Luz , Microbiota/genética , Microbiota/efeitos da radiação , Fotossíntese/efeitos da radiação , Dinâmica Populacional
20.
J Cell Physiol ; 231(11): 2339-45, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27186840

RESUMO

Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community-level data as a critical input for the network reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph-heterotroph consortium that was used to provide data needed for a community-level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources. J. Cell. Physiol. 231: 2339-2345, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Bactérias/metabolismo , Redes e Vias Metabólicas , Consórcios Microbianos , Modelos Biológicos , Bactérias/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Consórcios Microbianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA