Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Bioprocess Biosyst Eng ; 45(6): 1057-1064, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35412074

RESUMO

Pseudomonas taetrolens has previously been shown to convert cellobiose to cellobionic acid (CBA), which can potentially be used in cosmetics, food, and pharmaceutical industries. The cellobiose-oxidizing activity of the P. taetrolens strain, which expressed the homologous quinoprotein glucose dehydrogenase (GDH), was increased by approximately 50.8% compared to the original strain. Whole-cell biocatalyst (WCB) of the genetically modified P. taetrolens strain [pDSK-GDH] was prepared simply by fermentation and washing processes. Reaction conditions for the proper use of WCB, such as reaction temperature, cell density to be added, and cell harvest time for preparing WCB, were investigated. The highest CBA productivity (18.2 g/L/h) was achieved when WCB prepared in the late-exponential phase of cell culture was used at 35 °C with cell density of 10 at OD600nm. Under these conditions, 200 g/L of cellobiose was all converted to CBA in 11 h, and the WCB of P. taetrolens [pDSK-GDH] maintained the maximum catalytic activity during at least six cycles without a significant decline in the productivity. Our results suggest that the manufacture of WCB based on genetically engineered P. taetrolens and its optimized use could be further developed as an economically viable option for the large-scale production of CBA.


Assuntos
Celobiose , Dissacarídeos , Pseudomonas/genética , Pseudomonas/metabolismo
2.
Bioprocess Biosyst Eng ; 45(5): 901-909, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35201399

RESUMO

Maltobionic acid (MBA) can be applied to various fields such as food, cosmetics, and pharmaceutical industries. In this study, whole-cell biocatalysis for MBA production was performed using recombinant Pseudomonas taetrolens homologously expressing quinoprotein glucose dehydrogenase (GDH). Various reaction parameters such as temperature, cell density, and cell harvest time, were optimized for improving MBA production. Under the optimized reaction conditions using pure maltose as a substrate, the MBA production titer, yield, and productivity of whole-cell biocatalyst (WCB) were 200 g/L, 95.6%, and 18.18 g/L/h, respectively, which were the highest compared to those reported previously. Productivity, a key factor for industrial MBA production, obtained from whole-cell biocatalysis in this study, was enhanced by approximately 1.9-fold compared to that obtained in our previous work (9.52 g/L/h) using the fermentation method. Additionally, the WCB could be reused up to six times without a significant reduction in MBA productivity, indicating that the WCB is very robust. Although MBA productivity (8.33 g/L/h) obtained from high-maltose corn syrup (HMCS) as a substrate was 45.8% of that using pure maltose, HMCS can be a better substrate for commercial MBA production because its price is only 1.1% of that of pure maltose. The results of this study using a WCB to convert maltose into MBA may support the development of a potential industrial process for more economically effective MBA production in the future.


Assuntos
Maltose , Zea mays , Biocatálise , Dissacarídeos , Pseudomonas
3.
Bioprocess Biosyst Eng ; 45(4): 711-720, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35039943

RESUMO

Polyethylene terephthalate (PET) waste has caused serious environmental pollution. Recently, PET depolymerization by enzymes with PET-depolymerizing activity has received attention as a solution to recycle PET. An engineered variant of leaf-branch compost cutinase (293 amino acid), ICCG (Phe243Ile/Asp238Cys/Ser283Cys/Tyr127Gly), showed excellent depolymerizing activity toward PET at 72 °C, which was the highest depolymerizing activity and thermo-stability ever reported in previous works. However, this enzyme was only produced by heterologous expression in the cytoplasm of Escherichia coli, which requires complex separation and purification steps. To simplify the purification steps of ICCG, we developed a secretory production system using Bacillus subtilis and its 174 types of N-terminal signal peptides. The recombinant strain expressing ICCG with the signal peptide of serine protease secreted the highest amount (9.4 U/mL) of ICCG. We improved the production of ICCG up to 22.6 U/mL (85 µg/mL) by performing batch fermentation of the selected strain in 2 L working volume using a 5-L fermenter, and prepared the crude ICCG solution by concentrating the culture supernatant. The recombinant ICCG successfully depolymerized a PET film with 37% crystallinity at 37 °C and 70 °C. In this study, we developed a secretory production system of the engineered cutinase with PET-depolymerizing activity to obtain high amounts of the enzyme by a relatively simple purification method. This system will contribute to the recycling of PET waste via a more efficient and environmentally friendly method based on enzymes with PET-depolymerizing activity.


Assuntos
Bacillus subtilis , Polietilenotereftalatos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Escherichia coli/genética , Escherichia coli/metabolismo
4.
Enzyme Microb Technol ; 145: 109749, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33750539

RESUMO

Enzyme immobilization provides substantial advantages in terms of improving the efficiency of enzymatic process as well as enhancing the reusability of enzymes. Phasins (PhaPs) are naturally occurring polyhydroxyalkanoate (PHA)-binding proteins, and thus can potentially be used as a fusion partner for oriented immobilization of enzymes onto PHA supports. However, presently available granular PHA supports have low surface-area-to-volume ratio and limited configurational flexibility of enzymatic reactions. In this study, we explored the use of electrospun polyhydroxybutyrate (PHB) nanofibers as an alternative support for high density immobilization of a PhaP-fused lipase. As envisioned, the electrospun PHB nanofibers could anchor 120-fold more enzyme than PHB granules of the same weight. Furthermore, the enzymes immobilized onto the PHB nanofibers exhibited markedly higher stability and activity compared to when immobilized on conventional immobilization supports. Our approach combines the advantageous features of nanofibrous material and specificity of biomolecular interaction for the efficient use of enzymes, which can be widely adopted in the development of various enzymatic processes.


Assuntos
Nanofibras , Enzimas Imobilizadas , Lipase
5.
Microorganisms ; 8(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053917

RESUMO

: Bacterial phospholipase A1 (PLA1) is used in various industrial fields because it can catalyze the hydrolysis, esterification, and transesterification of phospholipids to their functional derivatives. It also has a role in the degumming process of crude plant oils. However, bacterial expression of the foreign PLA1-encoding gene was generally hampered because intracellularly expressed PLA1 is inherently toxic and damages the phospholipid membrane. In this study, we report that secretion-based production of recombinant PlaA, a bacterial PLA1 gene, or co-expression of PlaS, an accessory gene, minimizes this harmful effect. We were able to achieve high-level PlaA production via secretion-based protein production. Here, TliD/TliE/TliF, an ABC transporter complex of Pseudomonas fluorescens SIK-W1, was used to secrete recombinant proteins to the extracellular medium. In order to control the protein expression with induction, a new strain of P. fluorescens, which had the lac operon repressor gene lacI, was constructed and named ZYAI strain. The bacteriotoxic PlaA protein was successfully produced in a bacterial host, with help from ABC transporter-mediated secretion, induction-controlled protein expression, and fermentation. The final protein product is capable of degumming oil efficiently, signifying its application potential.

6.
Bioprocess Biosyst Eng ; 43(5): 937-944, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32062704

RESUMO

Lactobionic acid (LBA) was produced by fermentation of Pseudomonas taetrolens. First, to increase the production of LBA by P. taetrolens, we controlled the pH of culture medium by CaCO3 addition (30 g/L) and then examined the initial lactose concentration ranging from 50 to 200 g/L and the growth temperature ranging from 20 to 37 °C. Both the LBA production titer (180 g/L) and the productivity (2.5 g/L h) were highest at 200 g/L lactose concentration and 25 °C of cell growth temperature in shake-flask culture. Although the production of LBA (178 g/L) was almost similar during the batch fermentation of P. taetrolens using 5 L bioreactor, the LBA productivity highly increased to 4.9 g/L h. The method using ethanol precipitation and ion-exchange chromatography was developed to recover the pure LBA from the fermentation broth. The optimum volume of ethanol and pH of culture medium for the precipitation of Ca2+ salt form of LBA were six volume of ethanol and pH 6.5, respectively. The cation-exchange resin T42 finally showed the best recovery yield (97.6%) of LBA from the culture supernatant. The production titer (178 g/L) and the productivity (4.9 g/L h) of lactobionic acid in this study were highest among the previous studies ever reported using P. taetrolens as a production strain of LBA.


Assuntos
Reatores Biológicos , Dissacarídeos/biossíntese , Temperatura Alta , Pseudomonas/crescimento & desenvolvimento , Carbonato de Cálcio/química , Carbonato de Cálcio/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Concentração de Íons de Hidrogênio , Lactose/química , Lactose/farmacologia
7.
Nanoscale ; 11(29): 13878-13884, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31304500

RESUMO

Stimulation of dendritic cells (DCs) by antigens (Ags) promotes an Ag-specific immune response that kills Ag-expressing pathogens. These biologically inspired nanocarriers have received much attention as tools to deliver cancer Ags to DCs. A polymer-templated protein nanoball having hemagglutinin (H1-NB) that mimics the influenza virus can be used as a cancer Ag delivery vehicle, as DCs show effective phagocytic activities against H1-NB without any adjuvant. In the present study, H1-NB containing ovalbumin (OVA), a model Ag (H1-OVA-NB), was prepared as an anti-cancer agent and evaluated for its effect on anticancer immunity. H1-OVA-NB treatments in C57BL/6 mice enhanced OVA-specific immune activation and efficiently inhibited B16-OVA tumor growth compared to control groups. Our results indicate that H1-NB is an effective carrier for Ag delivery to DCs and promotes immunotherapy to fight cancer.


Assuntos
Antígenos/imunologia , Células Dendríticas/imunologia , Hemaglutininas/química , Imunoterapia , Nanopartículas/química , Polímeros/química , Animais , Antígenos/química , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Portadores de Fármacos/química , Hemaglutininas/genética , Hemaglutininas/metabolismo , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Orthomyxoviridae/metabolismo , Ovalbumina/genética , Ovalbumina/imunologia , Ovalbumina/metabolismo
8.
Biomaterials ; 183: 234-242, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30176403

RESUMO

The generation of virus-mimetic nanoparticles has received much attention in developing a new vaccine for overcoming the limitations of current vaccines. Thus, a method, encompassing most viral features for their size, hydrophobic domain and antigen display, would represent a meaningful direction for the vaccine development. In the present study, a polymer-templated protein nanoball with direction oriented hemagglutinin1 on its surface (H1-NB) was prepared as a new influenza vaccine, exhibiting most of the viral features. Moreover, the concentrations of antigen on the particle surface were controlled, and its effect on immunogenicity was estimated by in vivo studies. Finally, H1-NB efficiently promoted H1-specific immune activation and cross-protective activities, which consequently prevented H1N1 infections in mice.


Assuntos
Hemaglutininas Virais/metabolismo , Hemaglutininas/química , Vacinas contra Influenza/química , Nanopartículas/química , Polímeros/química , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Células Dendríticas/fisiologia , Hemaglutininas/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Tamanho da Partícula , Baço/citologia
9.
Biomacromolecules ; 19(11): 4219-4227, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30265806

RESUMO

Protein nanocapsules are potentially useful as functional nanocarriers because of their hollow structure and high biocompatibility and the intrinsic activity of their protein constituents. However, the development of a facile method for the preparation of oriented nanocapsules that retain their protein activity has been challenging. Here we describe the preparation of protein nanocapsules through the enzymatic removal of polymer templates. Nickel(II) nitrilotriacetic acid-end-functionalized poly(lactic acid) (Ni2+-NTA-PLA) was introduced as a polymeric template to immobilize hexa-histidine-tagged green fluorescence protein (His6-GFP) with consistent orientation. Following protein cross-linking and core-degradation, various measurements as a function of degradation time indicated the formation of hollow structures. We also demonstrated orientational control and activity preservation of the protein after capsule preparation. Protein nanocapsules prepared by this method can act as functional containers, taking advantage of the intrinsic function of their constituent proteins without additional modification.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Histidina/química , Proteínas Imobilizadas/metabolismo , Nanocápsulas/química , Níquel/química , Ácido Nitrilotriacético/química , Polímeros/química , Proteínas de Fluorescência Verde/química , Proteínas Imobilizadas/química , Propriedades de Superfície
10.
PLoS One ; 13(1): e0183893, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293506

RESUMO

Toxoflavin, a 7-azapteridine phytotoxin produced by the bacterial pathogens such as Burkholderia glumae and Burkholderia gladioli, has been known as one of the key virulence factors in crop diseases. Because the toxoflavin had an antibacterial activity, a metagenomic E. coli clone capable of growing well in the presence of toxoflavin (30 µg/ml) was isolated and the first metagenome-derived toxoflavin-degrading enzyme, TxeA of 140 amino acid residues, was identified from the positive E. coli clone. The conserved amino acids for metal-binding and extradiol dioxygenase activity, Glu-12, His-8 and Glu-130, were revealed by the sequence analysis of TxeA. The optimum conditions for toxoflavin degradation were evaluated with the TxeA purified in E. coli. Toxoflavin was totally degraded at an initial toxoflavin concentration of 100 µg/ml and at pH 5.0 in the presence of Mn2+, dithiothreitol and oxygen. The final degradation products of toxoflavin and methyltoxoflavin were fully identified by MS and NMR as triazines. Therefore, we suggested that the new metagenomic enzyme, TxeA, provided the clue to applying the new metagenomic enzyme to resistance development of crop plants to toxoflavin-mediated disease as well as to biocatalysis for Baeyer-Villiger type oxidation.


Assuntos
Toxinas Bacterianas/metabolismo , Burkholderia/metabolismo , Enzimas/metabolismo , Metagenômica , Pirimidinonas/metabolismo , Triazinas/metabolismo , Sequência de Aminoácidos , Homologia de Sequência de Aminoácidos
11.
Polymers (Basel) ; 9(4)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970824

RESUMO

This study demonstrates the synthesis of an amphiphilic block copolymer, Ni2+-nitrilotiracetic acid-end-functionalized-poly(poly(ethylene glycol)methyl ether methacrylate)-block-polystyrene (NTA-p(PEGMA-b-St)), morphology control via their self-assembly behavior and reversible bioconjugation of hexahistidine-tagged green fluorescent protein (His6-GFP) onto the surfaces of polymeric vesicles through nitrilotriacetic acid (NTA)-Ni2+-His interaction. First, the t-boc-protected-NTA-p(PEGMA-b-St) was synthesized by atom transfer radical polymerization. After the removal of the t-boc protecting group, the NTA group of the polymer was complexed with Ni2+. To induce self-assembly, water was added as a selective solvent to the solution of the copolymer in tetrahydrofuran (THF). Varying the water content of the solution resulted in various morphologies including spheres, lamellas and vesicles. Finally, polymeric vesicles decorated with green fluorescent protein (GFP) on their surfaces were prepared by the addition of His6-GFP into the vesicles solution. Reversibility of the binding between vesicles and His6-GFP was confirmed with a fluorescent microscope.

12.
Biotechnol Biofuels ; 9: 159, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27478501

RESUMO

BACKGROUND: Phospholipase A1 is an enzyme that hydrolyzes phospholipids at the sn-1 position. It has potential applications across diverse fields including food, pharmaceutical, and biofuel industries. Although there has been increasing interest in the use of phospholipase A1 for degumming of plant oils during biodiesel production, production of recombinant phospholipase A1 has been hampered by low efficiency of gene expression and its toxicity to the host cell. RESULTS: While expression of phospholipase A1 in Escherichia coli resulted in extremely low productivity associated with inhibition of transformed cell growth, drastically higher production of functional phospholipase A1 was achieved in a cell-free protein synthesis system where enzyme expression is decoupled from cell physiology. Compared with expression in E. coli, cell-free synthesis resulted in an over 1000-fold higher titer of functional phospholipase A1. Cell-free produced phospholipase A1 was also used for successfully degumming crude plant oil. CONCLUSIONS: We demonstrate successful production of Serratia sp. phospholipase A1 in a cell-free protein synthesis system. Including the phospholipase A1 investigated in this study, many industrial enzymes can interfere with the regular physiology of cells, making cellular production of them problematic. With the experimental results presented herewith, we believe that cell-free protein synthesis will provide a viable option for rapid production of important industrial biocatalysts.

13.
J Biosci Bioeng ; 122(3): 283-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27033673

RESUMO

An ABC transporter, TliDEF, from Pseudomonas fluorescens SIK W1, mediates the secretion of its cognate lipase, TliA, in a temperature-dependent secretion manner; the TliDEF-mediated secretion of TliA was impossible at the temperatures over 33°C. To isolate a mutant TliDEF capable of secreting TliA at 35°C, the mutagenesis of ABC protein (TliD) was performed. The mutated tliD library where a random point mutation was introduced by error-prone PCR was coexpressed with the wild-type tliE, tliF and tliA in Escherichia coli. Among approximately 10,000 colonies of the tliD library, we selected one colony that formed transparent halo on LB-tributyrin plates at 35°C. At the growth temperature of 35°C, the selected mutant TliD showed 1.75 U/ml of the extracellular lipase activity, while the wild-type TliDEF did not show any detectable lipase activity in the culture supernatant of E. coli. Moreover, the mutant TliD also showed higher level of TliA secretion than the wild-type TliDEF at other culture temperatures, 20°C, 25°C and 30°C. The mutant TliD had a single amino acid change (Ser287Pro) in the predicted transmembrane region in the membrane domain of TliD, implying that the corresponding region of TliD was important for causing the temperature-dependent secretion of TliDEF. These results suggested that the property of ABC transporter could be changed by the change of amino acid in the ABC protein.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Pseudomonas fluorescens/metabolismo , Temperatura , Transportadores de Cassetes de Ligação de ATP/genética , Aminoácidos/genética , Proteínas de Bactérias/genética , Meios de Cultura , Escherichia coli/genética , Escherichia coli/metabolismo , Lipase/metabolismo , Mutação Puntual , Pseudomonas fluorescens/genética
14.
Appl Biochem Biotechnol ; 177(7): 1553-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378013

RESUMO

Photobacterium lipolyticum M37 lipase (LipM37) was immobilized on the surface of intracellular polyhydroxybutyrate (PHB) granules in Escherichia coli. LipM37 was genetically fused to Cupriavidus necator PHA synthase (PhaC Cn ), and the engineered PHB operon containing the lip M37 -phaC Cn successfully mediated the accumulation of PHB granules (85 wt.%) inside E. coli cells. The PHB granules were isolated from the crude cell extract, and the immobilized LipM37 was comparable with the free form of LipM37 except for a favorable increase in thermostability. The immobilized LipM37 was used to synthesize oleic acid methyl ester (biodiesel) and oleic acid dodecyl ester (wax ester), and yielded 98.0 % conversion in esterification of oleic acid and dodecanol. It was suggested that the LipM37-PhaCCn fusion protein successfully exhibited bifunctional activities in E. coli and that in situ immobilization of lipase to the intracellular PHB could be a promising approach for expanding the biocatalytic toolbox for industrial chemical synthesis.


Assuntos
Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Espaço Intracelular/química , Lipase/química , Lipase/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Biocatálise , Estabilidade Enzimática , Escherichia coli/citologia , Esterificação , Ésteres , Photobacterium/enzimologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Propriedades de Superfície
15.
AMB Express ; 5(1): 131, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26253390

RESUMO

Poly-3-hydroxybutyrate (PHB), the most abundant type of polyhydroxyalkanoates (PHA) is synthesized inside a variety of microorganisms as a primary candidate for industrial PHB production. Lipophilic dyes such as Nile red and BODIPY have been used to quantify intracellular PHB, but their uses have often been limited in terms of sensitivity and accuracy. In this study, a newly developed lipophilic fluorescent dye LipidGreen1 was used to quantify intracellular PHB. LipidGreen1 stained viable colonies by adding the dye into the medium which enabled the effective selection of PHB-positive cells. Furthermore, the fluorescence intensity of LipidGreen1 maintained its fluorescence intensity much longer than that of Nile red. The fluorescence intensities of intracellular PHB stained by LipidGreen1 accurately agreed with PHB contents measured by gas chromatography. In addition, internalization of LipidGreen1 in Escherichia coli cell was not necessary to obtain quantitative measurements. PHB-synthase mutants were differentiated by fluorescence intensities with a good correlation to increased levels of PHB production. These results show that LipidGreen1 is sensitive and accurate in high-throughput screening of newly isolated and genetically modified bacteria with enhanced PHB production.

16.
Chembiochem ; 16(1): 77-82, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25477295

RESUMO

Most lipases resolve secondary alcohols in accordance with the "Kazlauskas rule" to give the R enantiomers. In a similar manner to other lipases, Candida rugosa lipase (CRL) exhibits R enantioselectivity towards heptan-2-ol, although the enantiomeric ratio (E) is low (E=1.6). However, unexpected enantioselectivity (i.e., S enantioselectivity, E=58) of CRL towards 4-(tert-butoxycarbonylamino)butan-2-ol, which has a similar chain length to heptan-2-ol, has been observed. To develop a deeper understanding of the molecular basis for this unusual enantioselectivity, we have conducted a series of molecular modeling and substrate engineering experiments. The results of these computational and experimental analyses indicated that a hydrogen bond between the Ser450 residue and the nitrogen atom of the carbamate group is critical to stabilize the transition state of the S enantiomer.


Assuntos
Amino Álcoois/química , Candida/química , Proteínas Fúngicas/química , Heptanol/química , Lipase/química , Candida/enzimologia , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Proteínas Recombinantes/química , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Biotechnol Lett ; 36(10): 2037-42, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24930103

RESUMO

Heterologous ABC protein exporters, the apparatus of type I secretion pathway in Gram-negative bacteria, were used for extracellular production of Pseudomonas fluorescens lipase (TliA) in recombinant Escherichia coli. The effect of the expression of different ABC protein exporter gene clusters (P. fluorescens tliDEF, Pseudomonas aeruginosa aprDEF, Erwinia chrysanthemi prtDEF, and Serratia marcescens lipBCD genes) was examined on the secretion of TliA at growth temperatures of 20, 25, 30 and 35 °C. TliA secretion in recombinant E. coli XL10-Gold varied depending upon type of ABC protein exporter and culture temperature. E. coli expressing S. marcescens lipBCD genes showed the highest secretion level of TliA (122.8 U ml(-1)) when cultured at 25 °C. Thus, optimized culture conditions for efficient extracellular production of lipase in recombinant E. coli can be designed by changing the type of ABC protein exporter and the growth temperature.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Lipase/metabolismo , Pseudomonas fluorescens/enzimologia , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Lipase/genética , Pseudomonas fluorescens/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Via Secretória , Temperatura
18.
Biotechnol Lett ; 36(8): 1687-92, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24737082

RESUMO

The industrially-important thermostable lipase, TliA, was extracellularly produced in the recombinant Pseudomonas fluorescens by the homologous expression of TliA and its cognate ABC protein exporter, TliDEF. To increase the secretory production of TliA, we optimized the growth temperature and the culture medium of P. fluorescens. The total amount and the specific productivity of lipase was highest at 25 °C of cell growth temperature, although maximal cell growth was observed at 30 °C. Using the culture medium composed of 20 g dextrin l(-1), 40 g Tween 80 l(-1) and 30 g peptone l(-1), TliA was produced at a level of 2,200 U ml(-1) in a flask culture. The TliA production increased about 3.8-fold (8,450 U ml(-1)) in batch fermentation using a 2.5 l fermentor, which was about 7.7-fold higher than that of previously reported TliA production.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Meios de Cultura/química , Lipase/biossíntese , Pseudomonas fluorescens/crescimento & desenvolvimento , Pseudomonas fluorescens/metabolismo , Proteínas de Bactérias , Técnicas de Cultura Celular por Lotes , Reatores Biológicos/microbiologia , Carbono/farmacologia , Proliferação de Células/efeitos dos fármacos , Fermentação/efeitos dos fármacos , Nitrogênio/farmacologia , Pseudomonas fluorescens/efeitos dos fármacos , Temperatura
19.
Methods Mol Biol ; 1118: 97-108, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24395411

RESUMO

We present a strategy for expression and screening of microbial enzymes without involving cloning procedures. Libraries of putative ω-transaminases (ω-TA) and mutated Candida antarctica lipase B (CalB) are PCR-amplified from bacterial colonies and directly expressed in an Escherichia coli-based cell-free protein synthesis system. The open nature of cell-free protein synthesis system also allows streamlined analysis of the enzymatic activity of the expressed enzymes, which greatly shortens the time required for enzyme screening. We expect that the proposed strategy will provide a universal platform for bridging the information gap between nucleotide sequence and protein function, in order to accelerate the discovery of novel enzymes. The proposed strategy can also serve as a viable option for the rapid and precise tuning of enzyme molecules, not only for analytical purposes, but also for industrial applications. This is accomplished via large-scale production using microbial cells transformed with variant genes selected from the cell-free expression screening.


Assuntos
Ensaios Enzimáticos/métodos , Escherichia coli/metabolismo , Proteínas Fúngicas/biossíntese , Lipase/biossíntese , Biossíntese de Proteínas , Transaminases/biossíntese , Sistema Livre de Células , Estabilidade Enzimática , Escherichia coli/citologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Biblioteca Gênica , Hidrólise , Lipase/química , Lipase/genética , Lipase/metabolismo , Mutação , Reação em Cadeia da Polimerase , Especificidade por Substrato , Temperatura , Transaminases/química , Transaminases/genética , Transaminases/metabolismo , Triglicerídeos/metabolismo
20.
Extremophiles ; 17(6): 1013-21, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24030484

RESUMO

A novel alkaliphilic esterase (EstJ) was identified from a soil metagenome of Jeju Island, Korea, using a 96-well plate-based functional assay for determination of pH dependence of activity. The amino acid sequence of EstJ showed low similarity (32-45 %) to putative α/ß hydrolases derived from whole-genome sequencing studies. EstJ, although not belonging to any of the known families of bacterial lipolytic enzymes, however, it showed closest sequence identity to the family IV enzymes that are related to the mammalian hormone-sensitive lipases. The highly conserved motifs of family IV enzymes were found in EstJ, but the corresponding sequences of each motif in EstJ were unique; most particularly the -(F/Y)(F/Y/L)HGGG- motif was represented by -WMVSGG-. The purified EstJ was highly active from pH 8.5 to 10.5. More than 90 % of maximum activity was also retained over a wide pH range of 5.5-0.5 after prolonged incubation. EstJ was also moderately thermophilic with an optimum temperature of 55 °C. Therefore, EstJ is the first metagenome-derived bacterial family IV esterase possessing both highly alkaliphilic and moderately thermophilic properties.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Metagenoma , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA