Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Poult Sci ; 103(6): 103673, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564837

RESUMO

Type IV interferon (IFN) has been shown to be a cytokine with antiviral activity in fish and amphibian. But, it has not been cloned and characterized functionally in avian species. In this study, type IV IFN, IFN-υ, and its 2 possible receptors, IFN-υR1 and IL10RB, were identified from an avian species, the mallard (Anas platyrhynchos). Mallard IFN-υ has a 531 bp open reading frame (ORF), encoding 176 amino acids (aa), and has highly conserved features as reported in different species, with an N-terminal signal peptide and a predicted multi-helix structure. The IFN-υR1 and IL10RB contain 528 and 343 aa, respectively, with IFN-υR1 protein containing JAK1 and STAT binding sites, and IL10RB containing TYK2 binding site. These 2 receptor subunits also possess 3 domains, the N-terminal extracellular domain, the transmembrane domain, and the C-terminal intracellular domain. Expression analysis indicated that IFN-υ, IFN-υR1 and IL10RB were widely expressed in examined organs/tissues, with the highest level observed in pancreas, blood, and kidney, respectively. The expression of IFN-υ, IFN-υR1 and IL10RB in liver, spleen or kidney was significantly upregulated after stimulation with polyI:C. Furthermore, recombinant IFN-υ protein induced the expression of ISGs, and the receptor of IFN-υ was verified as IFN-υR1 and IL10RB using a chimeric receptor approach in HEK293 cells. Taken together, these results indicate that IFN-υ is involved in the host innate immune response in mallard.


Assuntos
Proteínas Aviárias , Patos , Subunidade beta de Receptor de Interleucina-10 , Animais , Patos/genética , Subunidade beta de Receptor de Interleucina-10/genética , Subunidade beta de Receptor de Interleucina-10/química , Subunidade beta de Receptor de Interleucina-10/metabolismo , Proteínas Aviárias/genética , Proteínas Aviárias/química , Proteínas Aviárias/metabolismo , Sequência de Aminoácidos , Filogenia , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Receptores de Interferon/química , Alinhamento de Sequência/veterinária , Imunidade Inata , Interferons/genética , Interferons/metabolismo , Perfilação da Expressão Gênica/veterinária
2.
Biomed Pharmacother ; 100: 205-212, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29428669

RESUMO

Glioma has been considered as one of the most aggressive and popular brain tumors of patients. It is essential to explore the mechanism of glioma. In this study, we established PSMB8 as a therapeutic target for glioma treatment. Expression of PSMB8 as well as Ki-67 was higher in glioma tissues demonstrated by western blot and immunohistochemistry. Then, the role of PSMB8 in migration and proliferation of glioma cells was investigated by conducting wound-healing, trans-well assay, cell counting kit (CCK)-8, flow cytometry assay and colony formation analysis. The data showed that interfering PSMB8 may inhibit the migration and proliferation of glioma cells by reducing expression of cyclin A, cyclin B1, cyclin D1, Vimentin, and N-cadherin, and by increasing expression of E-cadherin. Additionally, interfering PSMB8 may induce apoptosis of glioma cells by upregulating caspase-3 expression. Furthermore, these in vitro findings were validated in vivo and the ERK1/2 and PI3k/AKT signaling pathways were involved in PSMB8-triggered migration and proliferation of glioma cells. In an in vivo model, downregulation of PSMB8 suppressed tumor growth. In conclusion, PSMB8 is closely associated with migration, proliferation, and apoptosis of glioma cells, and might be considered as a novel prognostic indicator in patients with gliomas.


Assuntos
Apoptose , Neoplasias Encefálicas/metabolismo , Movimento Celular , Proliferação de Células , Glioma/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Transdução de Sinais , Animais , Apoptose/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Glioma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA