Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(18): 52266-52287, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36826762

RESUMO

This study explores the spatial and temporal evolution characteristics of transportation carbon emissions from multiple scales. Based on the integrated DMSP/OLS-NPP/VIIRS nighttime light data, a transportation carbon emission estimation model was constructed, and the spatial and temporal evolution characteristics of transportation carbon emissions in 30 provinces and some counties in China from 2000 to 2019 were analyzed. The main findings are as follows: (1) The goodness-of-fit of the estimation model improved from 51.2 to 87.15% by introducing the GDP variables. (2) At the provincial scale, the provinces with high carbon emissions from transportation were mainly distributed in the eastern region, with the highest value increasing from 19,171.6 million tons in 2000 to 71,545.98 million tons in 2019. The spatial distribution has a significant and positive spatial spillover effect, and the H-H aggregation was mainly distributed in the east-central region, showing a trend of expansion from the coast to the inland. Trend analysis showed that Shandong, Guangdong, Shanghai, and Jiangsu were areas with a rapid growth of high carbon emissions. (3) The county scale displayed a northeast-southwest evolutionary pattern, with the center of gravity in Henan. The spatial distribution showed a significant spatial agglomeration phenomenon. Trend analysis indicated that the transportation carbon emissions in 184 counties need to be controlled urgently, which was the focus of carbon emission reduction. This paper theoretically enriches the measurement method of transportation carbon emissions and overcomes the problem of insufficient spatial information of statistical data. In practice, it provides a scientific basis for accurate emission reduction and low-carbon development of transportation.


Assuntos
Carbono , Emissões de Veículos , Emissões de Veículos/análise , China , Carbono/análise , Dióxido de Carbono/análise , Meios de Transporte , Desenvolvimento Econômico
2.
PLoS One ; 17(7): e0266013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802621

RESUMO

The transportation industry has entered a new stage from quantity expanding to structure optimization, quality and efficiency improvement, and from respective governance to integrative development. This indicates that the traditional corridor mode allocation dominated by quantity equilibrium can no longer meet the requirements of the new stage. In this paper, we propose a multi-entity programming model based on the economic equilibrium between supply and demand. It not only ensures the economic equilibrium in the market, but also maximizes the social benefits of the whole system, thereby realizing the sustainable development of the transportation system. Also, the Globalsearch algorithm and intlinprog algorithm are designed to solve the problem. The actual case of Beijing-Shanghai corridor shows that the model and algorithms are effective, providing decision support for the optimal allocation of regional transport network resources.


Assuntos
Algoritmos , Meios de Transporte , Pequim , China , Modelos Teóricos
3.
Micromachines (Basel) ; 10(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277290

RESUMO

We present herein a unique concept of multifrequency induced-charge electroosmosis (MICEO) actuated directly on driving electrode arrays, for highly-efficient simultaneous transport and convective mixing of fluidic samples in microscale ducts. MICEO delicately combines transversal AC electroosmotic vortex flow, and axial traveling-wave electroosmotic pump motion under external dual-Fourier-mode AC electric fields. The synthetic flow field associated with MICEO is mathematically analyzed under thin layer limit, and the particle tracing experiment with a special powering technique validates the effectiveness of this physical phenomenon. Meanwhile, the simulation results with a full-scale 3D computation model demonstrate its robust dual-functionality in inducing fully-automated analyte transport and chaotic stirring in a straight fluidic channel embedding double-sided quarter-phase discrete electrode arrays. Our physical demonstration with multifrequency signal control on nonlinear electroosmosis provides invaluable references for innovative designs of multifunctional on-chip analytical platforms in modern microfluidic systems.

4.
Electrophoresis ; 40(20): 2683-2698, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30883820

RESUMO

The phenomenon of electrothermal (ET) convection has recently captured great attention for transporting fluidic samples in microchannels embedding simple electrode structures. In the classical model of ET-induced flow, a conductivity gradient of buffer medium is supposed to arise from temperature-dependent electrophoretic mobility of ionic species under uniform salt concentrations, so it may not work well in the presence of evident concentration perturbation within the background electrolyte. To solve this problem, we develop herein a microscopic physical description of ET streaming by fully coupling a set of Poisson-Nernst-Planck-Navier-Stokes equations and temperature-dependent fluid physicochemical properties. A comparative study on a standard electrokinetic micropump exploiting asymmetric electrode arrays indicates that, our microscopic model always predicts a lower ET pump flow rate than the classical macroscopic model even with trivial temperature elevation in the liquid. Considering a continuity of total current density in liquids of inhomogeneous polarizability, a moderate degree of fluctuation in ion concentrations on top of the electrode array is enough to exert a significant influence on the induction of free ionic charges, rendering the enhanced numerical treatment much closer to realistic experimental measurement. Then, by placing a pair of thin-film resistive heaters on the bottom of an anodic channel interfacing a cation-exchange medium, we further provide a vivid demonstration of the enhanced model's feasibility in accurately resolving the combined Coulomb force due to the coexistence of an extended space charge layer and smeared interfacial polarizations in an externally-imposed temperature gradient, while this is impossible with conventional linear approximation. This leads to a reliable method to achieve a flexible regulation on spatial-temporal evolution of ion-depletion layer by electroconvective mixing. These results provide useful insights into ET-based flexible control of micro/nanoscale solid entities in modern micro-total-analytical systems.


Assuntos
Técnicas Eletroquímicas/métodos , Técnicas Analíticas Microfluídicas/métodos , Microscopia/métodos , Nanotecnologia/métodos , Simulação por Computador , Convecção , Técnicas Eletroquímicas/instrumentação , Desenho de Equipamento , Íons/química , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia/instrumentação , Nanotecnologia/instrumentação , Cloreto de Sódio/química
5.
Electrophoresis ; 40(6): 979-992, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30256428

RESUMO

Induced-charge electroosmosis (ICEO) has attracted tremendous popularity for driving fluid motion from the microfluidic community since the last decade, while less attention has been paid to ICEO-based nanoparticle manipulation. We propose herein a unique concept of hybrid electroosmotic kinetics (HEK) in terms of bi-phase ICEO (BICEO) actuated in a four-terminal spiral electrode array, for effective electrokinetic enrichment of fluorescent polystyrene nanoparticles on ideally polarizable metal strips. First, by alternating the applied AC voltage waves between consecutive discrete terminals, the flow stagnation lines where the sample nanoparticles aggregate can be switched in time between two different distribution modes. Second, we innovatively introduce the idea of AC field-effect flow control on BICEO; by altering the combination of gating voltage sequence, not only the number of circulative particle trapping lines is doubled, but the collecting locations can be flexibly reconfigured as well. Third, hydrodynamic streaming of DC-biased BICEO is tested in our device design, wherein the global linear electroosmosis dominates BICEO contributed from both AC and DC components, resulting in a reduction of particle enrichment area, while with a sharp increase in sample transport speed inside the bulk phase. The flow field associated with HEK is predicted using a linear asymptotic analysis under Debye-Huckel limit, with the simulation results in qualitative agreement with in-lab observations of nanoparticle trapping by exploiting a series of improved ICEO techniques. This work provides an affordable and field-deployable platform for real-time nanoparticle trapping in the context of dilute electrolyte.


Assuntos
Eletro-Osmose/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Nanopartículas/química , Eletricidade , Eletro-Osmose/métodos , Desenho de Equipamento , Cinética , Microeletrodos
6.
Micromachines (Basel) ; 9(9)2018 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-30424365

RESUMO

In this study, we make use of the AC field-effect flow control on induced-charge electroosmosis (ICEO), to develop an electrokinetic micromixer with 3D electrode layouts, greatly enhancing the device performance compared to its 2D counterpart of coplanar metal strips. A biased AC voltage wave applied to the central gate terminal, i.e., AC field-effect control, endows flow field-effect-transistor of ICEO the capability to produce arbitrary symmetry breaking in the transverse electrokinetic vortex flow pattern, which makes it fascinating for microfluidic mixing. Using the Debye-Huckel approximation, a mathematical model is established to test the feasibility of the new device design in stirring nanoparticle samples carried by co-flowing laminar streams. The effect of various experimental parameters on constructing a viable micromixer is investigated, and an integrated microdevice with a series of gate electrode bars disposed along the centerline of the channel bottom surface is proposed for realizing high-flux mixing. Our physical demonstration on field-effect nonlinear electroosmosis control in 3D electrode configurations provides useful guidelines for electroconvective manipulation of nanoscale objects in modern microfluidic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA