Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
J Environ Manage ; 369: 122412, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236608

RESUMO

Perfluorooctanoic acid (PFOA) as emerging pollutants was largely produced and stable in nature environment. Its fate and effect to the wasted sludge digestion process and corresponding microbial mechanism was rarely reported. This study investigated the different dose of PFOA to the wasted sludge digestion process, where the methane yield and microbial mechanism was illustrated. The PFOA added before digestion were 0-10000 µg/L, no significant variation in daily and accumulated methane production between each group. The 9th day methane yield was significantly higher than other days (p < 0.05). The soluble protein was significantly decreased after 76 days digestion (p < 0.001). The total PFOA in sludge (R2 = 0.8817) and liquid (R2 = 0.9083) phase after digestion was exponentially correlated with PFOA dosed. The PFOA in liquid phase was occupied 54.10 ± 18.38% of the total PFOA in all reactors. The dewatering rate was keep decreasing with the increase of PFOA added (R2 = 0.7748, p < 0.001). The mcrA abundance was significantly correlated with the pH value and organic matter concentration in the reactors. Chloroflexi was the predominant phyla, Aminicenantales, Bellilinea and Candidatus_Cloacimonas were predominant genera in all reactors. Candidatus_Methanofastidiosum and Methanolinea were predominant archaea in all reactors. The function prediction by FAPROTAX and Tax4fun implied that various PFOA dosage resulted in significant function variation. The fermentation and anaerobic chemoheterotrophy function were improved with the PFOA dose. Co-occurrence network implied the potent cooperation among the organic matter degradation and methanogenic microbe in the digestion system. PFOA has little impact to the methane generation while affect the microbe function significantly, its remaining in the digested sludge should be concerned to reduce its potential environmental risks.


Assuntos
Caprilatos , Fluorocarbonos , Metano , Esgotos , Metano/metabolismo , Fluorocarbonos/metabolismo , Anaerobiose , Esgotos/microbiologia , Caprilatos/metabolismo , Reatores Biológicos
2.
Virol Sin ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39349279

RESUMO

Unveiling the molecular mechanisms underlying rotavirus replication and pathogenesis has been hampered by the lack of a reverse genetics (RG) system in the past. Since 2017, multiple plasmid-based RG systems for simian, human, and murine-Like rotaviruses have been established. However, none of the described methods have supported the recovery of bovine rotaviruses (BRVs). Here, we established an optimized plasmid-based RG system for BRV culture-adapted strain (BRV G10P [15] BLR) and clinical isolates (BRV G6P[1] C73, G10P[11] HM26) based on a BHK-T7 cell clone stably expressing T7 polymerase. Furthermore, using this optimized RG system, we successfully rescued the reporter virus BRV rC73/Zs, rHM26/Zs and rBLR/Zs, harboring a genetically modified 1.8-kb segment 7 encoding full-length nonstructural protein 3 (NSP3) fused to ZsGreen, a 232-amino acid green fluorescent protein. Analysis of the stability of genomic insertions showed that the rC73/Zs and rBLR/Zs replicated efficiently and were genetically stable in seven rounds of serial passaging, while rHM26/Zs can be stabilized only up to the third generation, indicating that the BRV segment composition may influence the viral fitness. In addition, we adopted the recombinant reporter viruses for high-throughput screening application and discovered 12 candidates out of 1440 compounds with potential antiviral activities against rotavirus. In summary, this improved RG system of BRVs represents an important tool with great potential for understanding the molecular biology of BRV and facilitates the development of novel therapeutics and vaccines for BRV.

3.
Water Res X ; 24: 100246, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39220625

RESUMO

Aquaculture, producing half of global fish production, offers a high-quality protein source for humans. Improving nitrogen use efficiency (NUE) through microbial protein recovery is crucial for increasing fish production and reducing environmental footprint. However, the poor palatability and high moisture content of microbial protein make its utilization challenging. Here, a biofloc-worm reactor was integrated into a recirculating aquaculture system (BW_RAS) for the first time to convert microbial protein into Tubificidae (Oligochaeta) biomass, which was used as direct feed for culturing fish. Batch experiments indicated that an aeration rate of 0.132 m3 L -1 h -1 and a worm density of 0.3 g cm-2 on the carrier were optimal for microbial biomass growth and worm predation, respectively. Compared to the biofloc reactor-based recirculating aquaculture system (B_RAS), the BW_RAS improved water quality, NUE, and fish production by 17.1 % during a 120-day aquaculture period. The abundance of heterotrophic aerobic denitrifier Deinococcus in BW_RAS was one order of magnitude higher than in B_RAS, while heterotrophic bacteria Mycobacterium was more abundant in B_RAS. Denitrifiers cooperated with organic matter degraders and nitrogen assimilation bacteria for protein recovery and gaseous nitrogen loss while competing with predatory bacteria. Function prediction and qPCR indicated greater aerobic respiration, nitrate assimilation, nitrification (AOB-amoA), and denitrification (napA, nirK, nirS, nosZI), but lower fermentation in BWR compared to BR. This study demonstrated that BW_RAS increased microbial protein production and aerobic nitrogen cycling through ongoing worm predation, further enhancing fish production to a commercially viable level.

4.
Theranostics ; 14(12): 4683-4700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239525

RESUMO

N6-methyladenosine (m6A) is the most abundant post-transcriptional dynamic RNA modification process in eukaryotes, extensively implicated in cellular growth, embryonic development and immune homeostasis. One of the most profound biological functions of m6A is to regulate RNA metabolism, thereby determining the fate of RNA. Notably, the regulation of m6A-mediated organized RNA metabolism critically relies on the assembly of membraneless organelles (MLOs) in both the nucleus and cytoplasm, such as nuclear speckles, stress granules and processing bodies. In addition, m6A-associated MLOs exert a pivotal role in governing diverse RNA metabolic processes encompassing transcription, splicing, transport, decay and translation. However, emerging evidence suggests that dysregulated m6A levels contribute to the formation of pathological condensates in a range of human diseases, including tumorigenesis, reproductive diseases, neurological diseases and respiratory diseases. To date, the molecular mechanism by which m6A regulates the aggregation of biomolecular condensates associated with RNA metabolism is unclear. In this review, we comprehensively summarize the updated biochemical processes of m6A-associated MLOs, particularly focusing on their impact on RNA metabolism and their pivotal role in disease development and related biological mechanisms. Furthermore, we propose that m6A-associated MLOs could serve as predictive markers for disease progression and potential drug targets in the future.


Assuntos
Adenosina , RNA , Humanos , Adenosina/metabolismo , Adenosina/análogos & derivados , RNA/metabolismo , Organelas/metabolismo , Animais , Processamento Pós-Transcricional do RNA , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo
5.
J Hazard Mater ; 479: 135602, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39191010

RESUMO

Freshwater rivers are hotspots of N2O greenhouse gas emissions. Dissolved organic carbon (DOC) is the dominant electron donor for microbial N2O reduction, which can reduce N2O emission through enriching high N2O affinity denitrifiers or enriching non-denitrifying N2O-reducing bacteria (N2ORB), but the primary regulatory pathway remains unclear. Here, field study indicated that high DOC concentration in rivers enhanced denitrification rate but reduced N2O flux by improving nosZ gene abundance. Then, four N2O-fed membrane aeration biofilm reactors inoculated with river sediments from river channel, estuary, adjacent lake, and a mixture were continuously performed for 360 days, including low, high, and mixed DOC stages. During enrichment stages, the (nirS+nirK)/nosZ ratio showed no significant difference, but the community structure of denitrifiers and N2ORB changed significantly (p < 0.05). In addition, N2ORB strains isolated from different enrichment stages positioned in different branches of the phylogenetic tree. N2ORB strains isolated during high DOC stage showed significant higher maximum N2O-reducing capability (Vmax: 0.6 ± 0.4 ×10-4 pmol h-1 cell-1) and N2O affinity (a0: 7.8 ± 7.7 ×10-12 L cell-1 h-1) than strains isolated during low (Vmax: 0.1 ± 0.1 ×10-4 pmol h-1 cell-1, a0: 0.7 ± 0.4 ×10-12 L cell-1 h-1) and mixed DOC stages (Vmax: 0.1 ± 0.1 ×10-4 pmol h-1 cell-1, a0: 0.9 ± 0.9 ×10-12 L cell-1 h-1) (p < 0.05). Hence, under high DOC concentration conditions, the primary factor in reducing N2O emissions in rivers is the enrichment of complete denitrifiers with high N2O affinity, rather than non-denitrifying N2ORB.


Assuntos
Bactérias , Desnitrificação , Óxido Nitroso , Rios , Óxido Nitroso/metabolismo , Óxido Nitroso/análise , Rios/microbiologia , Rios/química , Bactérias/metabolismo , Bactérias/genética , Sedimentos Geológicos/microbiologia , Reatores Biológicos/microbiologia , Filogenia , Biofilmes , Carbono/metabolismo , Carbono/química , Oxirredução
6.
J Hazard Mater ; 479: 135617, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39213772

RESUMO

PFOA has garnered heightened scrutiny for its impact on denitrification, especially given its frequent detection in secondary effluent discharged from wastewater treatment plants. However, it is still unclear what potential risk PFOA release poses to a typical advanced treatment process, especially the sulfur-based autotrophic denitrification (SAD) process. In this study, different PFOA concentration were tested to explore their impact on denitrification kinetics and microbial dynamic responses of the SAD process. The results showed that an increase PFOA concentration from 0 to 1000 µg/L resulted in a decrease in nitrate removal rate from 9.52 to 7.73 mg-N/L·h. At the same time, it increased nitrite accumulation and N2O emission by 6.11 and 2.03 times, respectively. The inhibitory effect of PFOA on nitrate and nitrite reductase activity in the SAD process was linked to the observed fluctuations in nitrate and nitrite levels. It is noteworthy that nitrite reductase was more vulnerable to the influence of PFOA than nitrate reductase. Furthermore, PFOA showed a significant impact on gene expression and microbial community. Metabolic function prediction revealed a notable decrease in nitrogen metabolism and an increase in sulfur metabolism under PFOA exposure. This study highlights that PFOA has a considerable inhibitory effect on SAD performance.


Assuntos
Processos Autotróficos , Caprilatos , Desnitrificação , Fluorocarbonos , Nitratos , Nitritos , Enxofre , Poluentes Químicos da Água , Desnitrificação/efeitos dos fármacos , Processos Autotróficos/efeitos dos fármacos , Enxofre/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Caprilatos/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Nitrito Redutases/metabolismo , Nitrato Redutase/metabolismo , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
7.
ACS Omega ; 9(32): 34175-34184, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39157096

RESUMO

The rail transit construction process produces a large quantity of carbon emission. The carbon emission could be divided into two sources, including direct carbon emission from the construction process and indirect carbon emission by raw material utilization. With the promotion of China National carbon peaking and carbon neutrality goals, it is an industry trend for the rail transit construction company to reduce carbon emission during the construction event. This study provides a detailed overview of the possible carbon emission process and carbon mitigation process during the rail transit construction event and puts forward preliminary carbon mitigation suggestions and strategy for the rail transit construction process. The predominant carbon emission section during rail transit construction is the raw material (including the steel, cement, concrete, tunnel segment), electricity, and fuel consumption during construction. It is suggested that the rail transit construction process could achieve carbon emission mitigation from the following prospects: make careful plans for the raw material selection (such as using recycled concrete, recycled steel, and so forth), improve the construction process to reduce energy waste, and optimize the equipment selection during the mechanical and electrical installment process. By this, the carbon emission could be mitigated during the rail transit construction.

8.
Small ; : e2406783, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206610

RESUMO

Metal halide perovskites (MHPs) have undergone rapid development in the fields of solar cells, light diodes, lasing, photodetectors, etc. However, the MHPs still face significant challenges, such as poor stability and heterocompositing with other functional materials at the single nanoparticle level. Herein, the successful synthesis of well-dispersed CsPbBr3@TiO2 heterostructure nanocrystals (NCs) is reported, in which each heterostructure NC has only one CsPbBr3 with a precise anatase TiO2 coating ranging from asymmetric to symmetric. Due to the protection of anatase TiO2, CsPbBr3 shows dramatically improved chemical stability and photostability. More significantly, the synthesized CsPbBr3@TiO2 heterostructure NCs form a type II heterojunction, which strongly promoted efficient photogenerated carrier separation between anatase TiO2 and CsPbBr3, hence leading to improved optoelectronic activity. This study provides a robust avenue for synthesizing stable and highly efficient MHPs@metal oxide heterostructure NCs, paving the way for the practical application of all inorganic perovskites.

9.
Int J Oncol ; 65(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39054958

RESUMO

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that a possible error had been identified in the selection of images in Figs. 1 and/or 7. After having consulted their original data, the authors realized that an erroneous image appeared on p. 593, in Fig. 7F [the 'Hep­G2 / IL­8 (5 ng/ml)' data panel], where part of this figure panel was overlapping with an image on p. 589 in Fig. 1C (the 'Hep­G2 Co­cultured' data panel). After a thorough review and verification of the data by all the authors, they have confirmed that the original data presented in the paper were accurate, and the error was solely due to the selection of an incorrect image during figure arrangement. The authors confirm that this mistake in image selection did not affect the overall conclusions reported in the article. A corrected version of Fig. 7, including the correct data for the 'Hep­G2 / IL­8 (5 ng/ml)' panel in Fig. 7F, is shown on the next page. The authors are grateful to the Editor of International Journal of Oncology for granting them the opportunity to publish this Corrigendum. All the authors agree to the publication of this Corrigendum, and apologize to the readership for any inconvenience caused. [International Journal of Oncology 46: 587­596, 2015; DOI: 10.3892/ijo.2014.2761].

10.
Sci Rep ; 14(1): 17036, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043894

RESUMO

Microbubbles (MBs) combined with focused ultrasound (FUS) has emerged as a promising noninvasive technique to permeabilize the blood-brain barrier (BBB) for drug delivery into the brain. However, the safety and biological consequences of BBB opening (BBBO) remain incompletely understood. This study aims to investigate the effects of two parameters mediating BBBO: microbubble volume dose (MVD) and mechanical index (MI). High-resolution MRI-guided FUS was employed in mouse brains to assess BBBO by manipulating these two parameters. Afterward, the sterile inflammatory response (SIR) was studied 6 h post-FUS treatment. Results demonstrated that both MVD and MI significantly influenced the extent of BBBO, with higher MVD and MI leading to increased permeability. Moreover, RNA sequencing revealed upregulation of major inflammatory pathways and immune cell infiltration after BBBO, indicating the presence and extent of SIR. Gene set enrichment analysis identified 12 gene sets associated with inflammatory responses that were significantly upregulated at higher MVD or MI. A therapeutic window was established between therapeutically relevant BBBO and the onset of SIR, providing operating regimes to avoid damage from stimulation of the NFκB pathway via TNFɑ signaling to apoptosis. These results contribute to the optimization and standardization of BBB opening parameters for safe and effective drug delivery to the brain and further elucidate the underlying molecular mechanisms driving sterile inflammation.


Assuntos
Barreira Hematoencefálica , Inflamação , Microbolhas , Barreira Hematoencefálica/metabolismo , Animais , Camundongos , Inflamação/metabolismo , Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética , Encéfalo/metabolismo , Encéfalo/patologia , Masculino
11.
Cell Biosci ; 14(1): 83, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909262

RESUMO

Clinical outcome after traumatic brain injury (TBI) is closely associated conditions of other organs, especially lungs as well as degree of brain injury. Even if there is no direct lung damage, severe brain injury can enhance sympathetic tones on blood vessels and vascular resistance, resulting in neurogenic pulmonary edema. Conversely, lung damage can worsen brain damage by dysregulating immunity. These findings suggest the importance of brain-lung axis interactions in TBI. However, little research has been conducted on the topic. An advanced disease model using stem cell technology may be an alternative for investigating the brain and lungs simultaneously but separately, as they can be potential candidates for improving the clinical outcomes of TBI.In this review, we describe the importance of brain-lung axis interactions in TBI by focusing on the concepts and reproducibility of brain and lung organoids in vitro. We also summarize recent research using pluripotent stem cell-derived brain organoids and their preclinical applications in various brain disease conditions and explore how they mimic the brain-lung axis. Reviewing the current status and discussing the limitations and potential perspectives in organoid research may offer a better understanding of pathophysiological interactions between the brain and lung after TBI.

12.
Sci Total Environ ; 931: 172908, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697552

RESUMO

Shallow lakes, recognized as hotspots for nitrogen cycling, contribute to the emission of the potent greenhouse gas nitrous oxide (N2O), but the current emission estimates for this gas have a high degree of uncertainty. However, the role of N2O-reducing bacteria (N2ORB) as N2O sinks and their contribution to N2O reduction in aquatic ecosystems in response to N2O dynamics have not been determined. Here, we investigated the N2O dynamics and microbial processes in the nitrogen cycle, which included both N2O production and consumption, in five shallow lakes spanning approximately 500 km. The investigated sites exhibited N2O oversaturation, with excess dissolved N2O concentrations (ΔN2O) ranging from 0.55 ± 0.61 to 53.17 ± 15.75 nM. Sediment-bound N2O (sN2O) was significantly positively correlated with the nitrate concentration in the overlying water (p < 0.05), suggesting that nitrate accumulation contributes to benthic N2O generation. High N2O consumption activity (RN2O) corresponded to low ΔN2O. In addition, a significant negative correlation was found between RN2O and nir/nosZ, showing that bacteria encoding nosZ contributed to N2O consumption in the benthic sediments. Redundancy analysis indicated that benthic functional genes effectively reflected the variations in RN2O and ∆N2O. qPCR analysis revealed that the clade II nosZ gene was more sensitive to ΔN2O than the clade I nosZ gene. Furthermore, four novel genera of potential nondenitrifying N2ORB were identified based on metagenome-assembled genome analysis. These genera, which are affiliated with clade II, lack genes responsible for N2O production. Collectively, benthic N2ORB, especially for clade II-type N2ORB, harnesses N2O consumption activity leading to low N2O emissions from shallow lakes. This study advances our knowledge of the role of benthic clade II-type N2ORB in regulating N2O emissions in shallow lakes.


Assuntos
Bactérias , Lagos , Óxido Nitroso , Óxido Nitroso/análise , Lagos/química , Bactérias/classificação , Monitoramento Ambiental , Ciclo do Nitrogênio , Poluentes Atmosféricos/análise , Sedimentos Geológicos/química
13.
Micromachines (Basel) ; 15(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793167

RESUMO

Addressing peripheral nerve disorders with electronic medicine poses significant challenges, especially in replicating the dynamic mechanical properties of nerves and understanding their functionality. In the field of electronic medicine, it is crucial to design a system that thoroughly understands the functions of the nervous system and ensures a stable interface with nervous tissue, facilitating autonomous neural adaptation. Herein, we present a novel neural interface platform that modulates the peripheral nervous system using flexible nerve electrodes and advanced neuromodulation techniques. Specifically, we have developed a surface-based inverse recruitment model for effective joint position control via direct electrical nerve stimulation. Utilizing barycentric coordinates, this model constructs a three-dimensional framework that accurately interpolates inverse isometric recruitment values across various joint positions, thereby enhancing control stability during stimulation. Experimental results from rabbit ankle joint control trials demonstrate our model's effectiveness. In combination with a proportional-integral-derivative (PID) controller, it shows superior performance by achieving reduced settling time (less than 1.63 s), faster rising time (less than 0.39 s), and smaller steady-state error (less than 3 degrees) compared to the legacy model. Moreover, the model's compatibility with recent advances in flexible interfacing technologies and its integration into a closed-loop controlled functional neuromuscular stimulation (FNS) system highlight its potential for precise neuroprosthetic applications in joint position control. This approach marks a significant advancement in the management of neurological disorders with advanced neuroprosthetic solutions.

14.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746278

RESUMO

Blood-brain barrier opening (BBBO) using focused ultrasound (FUS) and microbubbles (MBs) has emerged as a promising technique for delivering therapeutics to the brain. However, the influence of various FUS and MB parameters on BBBO and subsequent sterile inflammatory response (SIR) remains unclear. In this study, we investigated the effects of MB size and composition, as well as the number of FUS sonication points, on BBBO and SIR in an immunocompetent mouse model. Using MRI-guided MB+FUS, we targeted the striatum and assessed extravasation of an MRI contrast agent to assess BBBO and RNAseq to assess SIR. Our results revealed distinct effects of these parameters on BBBO and SIR. Specifically, at a matched microbubble volume dose (MVD), MB size did not affect the extent of BBBO, but smaller (1 µm diameter) MBs exhibited a lower classification of SIR than larger (3 or 5 µm diameter) MBs. Lipid-shelled microbubbles exhibited greater BBBO and a more pronounced SIR compared to albumin-shelled microbubbles, likely owing to the latter's poor in vivo stability. As expected, increasing the number of sonication points resulted in greater BBBO and SIR. Furthermore, correlation analysis revealed strong associations between passive cavitation detection measurements of harmonic and inertial MB echoes, BBBO and the expression of SIR gene sets. Our findings highlight the critical role of MB and FUS parameters in modulating BBBO and subsequent SIR in the brain. These insights inform the development of targeted drug delivery strategies and the mitigation of adverse inflammatory reactions in neurological disorders.

15.
J Control Release ; 371: 193-203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782066

RESUMO

Microneedle patches have been developed as favorable platforms for delivery systems, such as the locoregional application of therapeutic drugs, and implantation systems, such as electronic devices on visceral tissue surfaces. However, the challenge lies in finding materials that can achieve both biocompatibility and stable fixation on the target tissue. To address this issue, utilizing a biocompatible adhesive biomaterial allows the flat part of the patch to adhere as well, enabling double-sided adhesion for greater versatility. In this work, we propose an adhesive microneedle patch based on mussel adhesive protein (MAP) with enhanced mechanical strength via ultraviolet-induced polyacrylate crosslinking and Coomassie brilliant blue molecules. The strong wet tissue adhesive and biocompatible nature of engineered acrylated-MAP resulted in the development of a versatile wet adhesive microneedle patch system for in vivo usage. In a mouse tumor model, this microneedle patch effectively delivered anticancer drugs while simultaneously sealing the skin wound. Additionally, in an application of rat subcutaneous implantation, an electronic circuit was stably anchored using a double-sided wet adhesive microneedle patch, and its signal location underneath the skin did not change over time. Thus, the proposed acrylated-MAP-based wet adhesive microneedle patch system holds great promise for biomedical applications, paving the way for advancements in drug delivery therapeutics, tissue engineering, and implantable electronic medical devices.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Proteínas , Animais , Proteínas/administração & dosagem , Microinjeções/métodos , Ratos Sprague-Dawley , Adesivo Transdérmico , Adesivos Teciduais/administração & dosagem , Camundongos , Humanos , Antineoplásicos/administração & dosagem , Masculino , Linhagem Celular Tumoral , Ratos , Feminino , Camundongos Endogâmicos BALB C , Pele/metabolismo , Adesivos/administração & dosagem , Acrilatos/química , Acrilatos/administração & dosagem
16.
PLoS One ; 19(4): e0300705, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603672

RESUMO

Obesity is a major independent risk factor for chronic kidney disease and can activate renal oxidative stress injury. Ascorbate and aldarate metabolism is an important carbohydrate metabolic pathway that protects cells from oxidative damage. However the effect of oxidative stress on this pathway is still unclear. Therefore, the primary objective of this study was to investigate the ascorbate and aldarate metabolism pathway in the kidneys of high-fat diet-fed obese mice and determine the effects of oxidative stress. Male C57BL/6J mice were fed on a high-fat diet for 12 weeks to induce obesity. Subsequently, non-targeted metabolomics profiling was used to identify metabolites in the kidney tissues of the obese mice, followed by RNA sequencing using transcriptomic methods. The integrated analysis of metabolomics and transcriptomics revealed the alterations in the ascorbate and aldarate metabolic pathway in the kidneys of these high-fat diet-fed obese mice. The high-fat diet-induced obesity resulted in notable changes, including thinning of the glomerular basement membrane, alterations in podocyte morphology, and an increase in oxidative stress. Metabolomics analysis revealed 649 metabolites in the positive-ion mode, and 470 metabolites in the negative-ion mode. Additionally, 659 differentially expressed genes (DEGs) were identified in the obese mice, of which 34 were upregulated and 625 downregulated. Integrated metabolomics and transcriptomics analyses revealed two DEGs and 13 differential metabolites in the ascorbate and aldarate metabolic pathway. The expression levels of ugt1a9 and ugt2b1 were downregulated, and the ascorbate level in kidney tissue of obese mice was reduced. Thus, renal oxidative stress injury induced by high-fat diet affects metabolic regulation of ascorbate and aldarate metabolism in obese mice. Ascorbate emerged as a potential marker for predicting kidney damage due to high-fat diet-induced obesity.


Assuntos
Dieta Hiperlipídica , Rim , Animais , Camundongos , Masculino , Dieta Hiperlipídica/efeitos adversos , Camundongos Obesos , Camundongos Endogâmicos C57BL , Rim/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Metabolômica , Perfilação da Expressão Gênica
17.
Sci Total Environ ; 926: 172108, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38556013

RESUMO

Global aquaculture production is expected to rise to meet the growing demand for food worldwide, potentially leading to increased anthropogenic greenhouse gases (GHG) emissions. As the demand for fish protein increases, so will stocking density, feeding amounts, and nitrogen loading in aquaculture ponds. However, the impact of GHG emissions and the underlying microbial processes remain poorly understood. This study investigated the GHG emission characteristics, key microbial processes, and environmental drivers underlying GHG emissions in low and high nitrogen loading aquaculture ponds (LNP and HNP). The N2O flux in HNP (43.1 ± 11.3 µmol m-2 d-1) was significantly higher than in LNP (-11.3 ± 25.1 µmol m-2 d-1), while the dissolved N2O concentration in HNP (52.8 ± 7.1 nmol L-1) was 150 % higher than in LNP (p < 0.01). However, the methane (CH4) and carbon dioxide (CO2) fluxes and concentrations showed no significant differences (p > 0.05). N2O replaced CH4 as the main source of Global Warming Potential in HNP. Pond sediments acted as a sink for N2O but a source for CH4 and CO2. The △N2O/(△N2O + â–³N2) in HNP (0.015 ± 0.007 %) was 7.7-fold higher than in LNP (0.002 ± 0.001 %) (p < 0.05). The chemical oxygen demand to NO2-N ratio was the most important environmental factor explaining the variability of N2O fluxes. Ammonia-oxidizing bacteria driven nitrification in water was the predominant N2O source, while comammox-driven nitrification and nosZII-driven N2O reduction in water were key processes for reducing N2O emission in LNP but decreased in HNP. The strong CH4 oxidization by Methylocystis and CO2 assimilation by algae resulted in low CH4 emissions and CO2 sink in the aquaculture pond. The Mantel test indicated that HNP increased N2O fluxes mainly through altering functional genes composition in water and sediment. Our findings suggest that there is a significant underestimation of N2O emissions without considering the significantly increased △N2O/(△N2O + â–³N2) caused by increased nitrogen loading.


Assuntos
Gases de Efeito Estufa , Animais , Lagoas , Dióxido de Carbono/análise , Nitrogênio , Monitoramento Ambiental , Aquicultura/métodos , Água , Metano/análise , Óxido Nitroso/análise , Solo
18.
Environ Sci Technol ; 58(11): 5162-5173, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38358933

RESUMO

Sidestream serves as an important reservoir collecting pharmaceuticals from sludge. However, the knowledge on sidestream pharmaceutical removal is still insufficient. In this work, atenolol biodegradation during sidestream partial nitritation (PN) processes characterized by high free nitrous acid (FNA) accumulation was modeled. To describe the FNA inhibition on ammonia oxidation and atenolol removal, Vadivelu-type and Hellinga-type inhibition kinetics were introduced into the model framework. Four inhibitory parameters along with four biodegradation kinetic parameters were calibrated and validated separately with eight sets of batch experimental data and 60 days' PN reactor operational data. The developed model could accurately reproduce the dynamics of nitrogen and atenolol. The model prediction further revealed that atenolol biodegradation efficiencies by ammonia-oxidizing bacteria (AOB)-induced cometabolism, AOB-induced metabolism, and heterotrophic bacteria-induced biodegradation were 0, ∼ 60, and ∼35% in the absence of ammonium and FNA; ∼ 14, ∼ 29, and ∼28% at 0.03 mg-N L-1 FNA; and 7, 15, and 5% at 0.19 mg-N L-1 FNA. Model simulation showed that the nitritation efficiency of ∼99% and atenolol removal efficiency of 57.5% in the PN process could be achieved simultaneously by controlling pH at 8.5, while 89.2% total nitrogen and 57.1% atenolol were removed to the maximum at pH of 7.0 in PN coupling with the anammox process. The pH-based operational strategy to regulate FNA levels was mathematically demonstrated to be effective for achieving the simultaneous removal of nitrogen and atenolol in PN-based sidestream processes.


Assuntos
Compostos de Amônio , Ácido Nitroso , Atenolol , Amônia/metabolismo , Nitrogênio/metabolismo , Oxirredução , Reatores Biológicos/microbiologia , Esgotos , Nitritos
19.
Hepatol Int ; 18(1): 254-264, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37980313

RESUMO

BACKGROUND: Minimal residual disease (MRD) is proposed to be responsible for tumor recurrence. The role of circulating tumor DNA (ctDNA) to detect MRD, monitor recurrence, and predict prognosis in liver cancer patients undergoing liver transplantation (LT) remains unrevealed. METHODS: Serial blood samples were collected to profile ctDNA mutational changes. Baseline ctDNA mutational profiles were compared with those of matched tumor tissues. Correlations between ctDNA status and recurrence rate (RR) and recurrence-free survival (RFS) were analyzed, respectively. Dynamic change of ctDNA was monitored to predict tumor recurrence. RESULTS: Baseline mutational profiles of ctDNA were highly concordant with those of tumor tissues (median, 89.85%; range 46.2-100%) in the 74 patients. Before LT, positive ctDNA status was associated with higher RR (31.7% vs 11.5%; p = 0.001) and shorter RFS than negative ctDNA status (17.8 vs 19.4 months; p = 0.019). After LT, the percentage of ctDNA positivity decreased (17.6% vs 47.0%; p < 0.001) and patients with positive ctDNA status had higher RR (46.2% vs 21.3%; p < 0.001) and shorter RFS (17.2 vs 19.2 months; p = 0.010). Serial ctDNA profiling demonstrated patients with decreased or constant negative ctDNA status had lower RR (33.3% vs 50.0%; p = 0.015) and favorable RFS (18.2 vs 15.0 months, p = 0.003) than those with increased or constant positive ctDNA status. Serial ctDNA profiling predicted recurrence months ahead of imaging evidence and serum tumor biomarkers. CONCLUSIONS: ctDNA could effectively detect MRD and predict tumor recurrence in liver cancer patients undergone LT.


Assuntos
DNA Tumoral Circulante , Neoplasias Hepáticas , Transplante de Fígado , Humanos , DNA Tumoral Circulante/genética , Recidiva Local de Neoplasia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/cirurgia , Biomarcadores Tumorais/genética
20.
Adv Mater ; 36(13): e2310338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148316

RESUMO

Customizable bioadhesives for individual organ requirements, including tissue type and motion, are essential, especially given the rise in implantable medical device applications demanding adequate underwater adhesion. While synthetic bioadhesives are widely used, their toxicity upon degradation shifts focus to biocompatible natural biomaterials. However, enhancing the adhesive strengths of these biomaterials presents ongoing challenges while accommodating the unique properties of specific organs. To address these issues, three types of customized underwater bioadhesive patches (CUBAPs) with strong, water-responsive adhesion and controllable biodegradability and stretchability based on bioengineered mussel adhesive proteins conjugated with acrylic acid and/or methacrylic acid are proposed. The CUBAP system, although initially nonadhesive, shows strong underwater adhesion upon hydration, adjustable biodegradation, and adequate physical properties by adjusting the ratio of poly(acrylic acid) and poly(methacrylic acid). Through ex vivo and in vivo evaluations using defective organs and the implantation of electronic devices, the suitability of using CUBAPs for effective wound healing in diverse internal organs is demonstrated. Thus, this innovative CUBAP system offers strong underwater adhesiveness with tailored biodegradation timing and physical properties, giving it great potential in various biomedical applications.


Assuntos
Adesivos , Metacrilatos , Água , Adesividade , Materiais Biocompatíveis/farmacologia , Cicatrização , Hidrogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA