Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Endocrinol ; 260(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991884

RESUMO

Aging-related reduction in androgen levels may be a possible risk factor for neurodegenerative diseases and contribute to cognitive impairment. Androgens may affect synaptic function and cognition in an androgen receptor (AR)-independent manner; however, the mechanisms connecting theses effects are unknown. Therefore, we used testicular feminization mutation (Tfm) male mice, a model with AR mutation, to test the effects of testosterone on synaptic function and cognition. Our results showed that testosterone ameliorated spatial memory deficit and neuronal damage, and increased dendritic spines density and postsynaptic density protein 95 (PSD95) and glutamate receptor 1 (GluA1) expression in the hippocampus of Tfm male mice. And these effects of testosterone were not inhibited by anastrozole, which suppressed conversion of testosterone to estradiol. Mechanistically, testosterone activated the extracellular signal-related kinase 1/2 (Erk1/2) and cyclic adenosine monophosphate response element-binding protein (CREB) in the hippocampus of Tfm male mice. Meanwhile, Erk1/2 inhibitor SCH772984 blocked the upregulation of phospho-CREB, PSD95, and GluA1 induced by testosterone in HT22 cells pretreated with flutamide, an androgen antagonist. Collectively, our data indicate that testosterone may ameliorate hippocampal synaptic damage and spatial memory deficit by activating the Erk1/2-CREB signaling pathway in an AR-independent manner.


Assuntos
Receptores Androgênicos , Testosterona , Animais , Masculino , Camundongos , Androgênios/farmacologia , Androgênios/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Receptores Androgênicos/metabolismo , Testosterona/metabolismo
2.
Front Endocrinol (Lausanne) ; 14: 1139874, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305050

RESUMO

Androgens are closely associated with functions of hippocampal learning, memory, and synaptic plasticity. The zinc transporter ZIP9 (SLC39A9) regulates androgen effects as a binding site distinct from the androgen receptor (AR). However, it is still unclear whether androgens regulate their functions in hippocampus of mice through ZIP9. Compared with wild-type (WT) male mice, we found that AR-deficient male testicular feminization mutation (Tfm) mice with low androgen levels had learning and memory impairment, decreased expression of hippocampal synaptic proteins PSD95, drebrin, SYP, and dendritic spine density. Dihydrotestosterone (DHT) supplementation significantly improved these conditions in Tfm male mice, although the beneficial effects disappeared after hippocampal ZIP9 knockdown. To explore the underlying mechanism, we first detected the phosphorylation of ERK1/2 and eIF4E in the hippocampus and found that it was lower in Tfm male mice than in WT male mice, it upregulated with DHT supplementation, and it downregulated after hippocampal ZIP9 knockdown. Next, we found that the expression of PSD95, p-ERK1/2, and p-eIF4E increased in DHT-treated mouse hippocampal neuron HT22 cells, and ZIP9 knockdown or overexpression inhibited or further enhanced these effects. Using the ERK1/2 specific inhibitor SCH772984 and eIF4E specific inhibitor eFT508, we found that DHT activated ERK1/2 through ZIP9, resulting in eIF4E phosphorylation, thus promoting PSD95 protein expression in HT22 cells. Finally, we found that ZIP9 mediated the effects of DHT on the expression of synaptic proteins PSD95, drebrin, SYP, and dendritic spine density in the hippocampus of APP/PS1 mice through the ERK1/2-eIF4E pathway and affected learning and memory. This study demonstrated that androgen affected learning and memory in mice through ZIP9, providing new experimental evidence for improvement in learning and memory in Alzheimer's disease with androgen supplementation.


Assuntos
Síndrome de Resistência a Andrógenos , Di-Hidrotestosterona , Animais , Humanos , Masculino , Camundongos , Androgênios , Fator de Iniciação 4E em Eucariotos , Hipocampo , Fatores de Transcrição
3.
Front Cell Neurosci ; 16: 872347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530178

RESUMO

Dysregulated synaptic plasticity is a key feature of neurodevelopmental disorders, including autism. This study investigated whether Fragile X mental retardation protein (FMRP), a selective RNA-binding protein that regulates synaptic protein expression by interacting with miRNAs, mediates the effects of androgens that play an important role in regulating the synaptic plasticity in the hippocampus. Experiments using mouse hippocampal neuron HT22 cells demonstrated that dihydrotestosterone (DHT) increased the expression of postsynaptic density protein 95 (PSD95) by inhibiting FMRP expression. Administration of miR-125a inhibitor upregulated the PSD95 expression and significantly increased the DHT-induced upregulation of PSD95. FMRP knockdown in HT22 cells reduced the expression of miR-125a. Moreover, miR-125a inhibitor upregulated the PSD95 expression in the DHT-treated HT22 cells with FMRP knockdown. Subsequently, the effects of androgen-mediated via FMRP in regulating neural behaviors and PSD95 expression and dendritic spines density/morphology were investigated using Fmr1 knockout (KO) and wild-type littermate (WT) mice. The castration of WT mice reduced the androgen levels, aggravated anxiety and depression, and impaired learning and memory and sociability of mice. DHT supplementation post-castration reversed the alterations in density and maturity of dendritic spines of hippocampal neurons and behavioral disorders in WT mice; however, it did not reveal such effects in Fmr1 KO mice. Further, immunohistochemical staining and western blotting analyses after knocking down miR-125a revealed similar effects of castration and post-castration DHT supplementation on PSD95 protein expression. These findings clarified that FMRP mediated the effects of DHT through miR-125a in regulating the expression of hippocampal synaptic protein PSD95. This study provides evidence for the neuroprotective mechanism of androgen in PSD95 expression and dendritic spines density/morphology and suggests that treatment interventions with androgen could be helpful for the management of synaptic plasticity disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA